Near-Surface Nanostructuring of Polymethylmethacrylate by Silicon Ion Implantation

Article Preview

Abstract:

The properties of organic polymers implanted with low-energy ions are of scientific and practical interest. In this work, we consider the nanostructure produced in the near-surface region of polymethylmethacrylate (PMMA) implanted with silicon (Si+) ions at energy of 50 keV and ion fluence of 1016 ions/cm2. By controlled local chemical modification in a depth of 150 – 200 nm, in PMMA was created a nano-thin bi-layer configuration consisting of ion-modified layer and ion-implanted layer with carbonaceous nanostructure. Such complex nanoscale arrangement and organic transconductance configuration was characterized by direct current electrical measurements. The field-effect configuration in Si+-implanted PMMA was driven through the formed ion-implanted buried planar layer (as a channel with a thickness of about 100 nm) of nanoclustered amorphous carbon as an organic semiconductor. The values of performance parameters, such as the charge carrier mobility, contact resistance and gate leakage current of this particular type of organic field-effect transistor configuration were determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-112

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Yang, X. Jiang, D.W. Pang (Eds.), Carbon Nanoparticles and Nanostructures, Springer Nature, Cham, Switzerland, (2016).

Google Scholar

[2] M.A. Poothanari, Y.B. Pottathara, S. Thomas, Carbon nanostructures for electromagnetic shielding applications, in: S. Thomas, Y. Grohens, Y.B. Pottathara (Eds.), Industrial Applications of Nanomaterials: Micro and Nano Technologies, Elsevier, Amsterdam, The Netherlands, 2019, Chap. 8, pp.205-223.

DOI: 10.1016/b978-0-12-815749-7.00008-6

Google Scholar

[3] R. Thiruvengadathan, S.C. Roy, P. Sundriyal, S. Bhattacharya (Eds.), Carbon Nanostructures: Fundamentals to Applications, AIP Publishing, Melville, New York, (2021).

DOI: 10.1063/9780735423114

Google Scholar

[4] A. Hazra, R. Goswami (Eds.), Carbon Nanomaterial Electronics: Devices and Applications, Springer Nature Singapore Pte Ltd., Singapore, (2021).

Google Scholar

[5] J.E. Morris, K. Iniewski (Eds.), Graphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications, CRC Press, Taylor & Francis Group, Boca Raton (FL), USA, (2013).

Google Scholar

[6] P. Slepicka, T. Hubacek, Z. Kolska, S. Trostova, N. Slepickova-Kasalkova, L. Bacakova, V. Svorcik, The properties and application of carbon nanostructures, in: F. Ylmaz (Ed.), Polymer Science, InTech, Rijeka, Croatia, 2013, Chap. 7, pp.175-202.

DOI: 10.5772/51062

Google Scholar

[7] L. Yang, Carbon nanostructures: new materials for orthopedic applications, in: L. Yang (Ed.), Nanotechnology-Enhanced Orthopedic Materials: Fabrications, Applications and Future Trends, Woodhead Publishing Series in Biomaterials, Number 102, Elsevier, Amsterdam, The Netherlands, 2015, pp.97-120.

DOI: 10.1016/b978-0-85709-844-3.00005-7

Google Scholar

[8] R.G. Mendes, P.S. Wrobel, A. Bachmatiuk, J. Sun, T. Gemming, Z. Liu, M.H. Rummeli, Carbon nanostructures as a multi-functional platform for sensing applications, Chemosensors 6 (2018) 60 (1-28).

DOI: 10.3390/chemosensors6040060

Google Scholar

[9] S. Zhang, H. Liu, J. Yu, B. Li, B. Ding, Multi-functional flexible 2D carbon nanostructured networks, Nat. Commun. 11 (2020) 5134 (1-8).

DOI: 10.1038/s41467-020-18977-6

Google Scholar

[10] A.K. Mishra, C.M. Hussain, S.B. Mishra (Eds.), Emerging Carbon-Based Nanocomposites for Environmental Applications, John Wiley & Sons Inc., Hoboken, NJ, USA, (2020).

Google Scholar

[11] T. Da Ros, N. Martín, J.F. Nierengarten (Eds.), Carbon Nanostructures for Biomedical Applications, Nanoscience & Nanotechnology Series No. 48, The Royal Society of Chemistry, Croydon, UK, (2021).

Google Scholar

[12] S. Adorinni, M.C. Cringoli, S. Perathoner, P. Fornasiero, S, Marchesan, Green approaches to carbon nanostructure-based biomaterials, Appl. Sci. 11 (2021) 2490 (1-20).

DOI: 10.3390/app11062490

Google Scholar

[13] N.S. Kasálková, P. Slepička, V. Švorčík, Carbon nanostructures, nanolayers, and their composites, Nanomaterials (Basel) 11 (2021) 2368 (1-23).

DOI: 10.3390/nano11092368

Google Scholar

[14] D.V. Sviridov, V.B. Odzhaev, I.P. Kozlov, Ion-implanted polymers, in: D.L. Wise, G.E. Wnek, D.J. Trantolo, T.M. Cooper, J.D. Gresser (Eds.), Electrical and Optical Polymer Systems – Fundamentals, Methods and Applications, Marcel Dekker, New York, 1998, Chap. 11, pp.387-422.

Google Scholar

[15] D. Fink (Ed.), Fundamentals of Ion Irradiated Polymers, Springer Series in Materials Science, Vol. 63, Springer-Verlag, Berlin, (2004).

Google Scholar

[16] A. Kondyurin, M. Bilek, Ion Beam Treatment of Polymers: Applications Aspects from Medicine to Space, Elsevier, Amsterdam, The Netherlands, (2015).

Google Scholar

[17] V.N. Popok, High-fluence ion implantation of polymers: Evolution of structure and composition, in: V. Kumar, B. Chaudhary, V. Sharma, K. Verma (Eds.), Radiation Effects in Polymeric Materials, Springer Series on Polymer and Composite Materials, Springer Nature Switzerland AG, Springer International Publishing, Cham, Switzerland, 2019, Chap. 3, pp.69-111.

DOI: 10.1007/978-3-030-05770-1_3

Google Scholar

[18] R.S. Thomaz, R.M. Papaleo, Ion beam modification of poly(methyl methacrylate) (PMMA), in: V. Kumar, B. Chaudhary, V. Sharma, K. Verma (Eds.), Radiation Effects in Polymeric Materials, Springer Series on Polymer and Composite Materials. Springer Nature Switzerland AG, Springer International Publishing, Cham, Switzerland, 2019, Chap. 4, pp.113-139.

DOI: 10.1007/978-3-030-05770-1_4

Google Scholar

[19] P.Singh, R. Kumar, Radiation Physics and Chemistry of Polymeric Materials, in: V. Kumar, B. Chaudhary, V. Sharma, K. Verma, (Eds.), Radiation Effects in Polymeric Materials, Springer Series on Polymer and Composite Materials, SSPCM, Springer Nature Switzerland AG, Cham, Switzerland, 2019, Chap. 2, pp.35-68.

DOI: 10.1007/978-3-030-05770-1_2

Google Scholar

[20] M. L. Bharti, F. Singh, R.C. Ramola, V. Joshi, Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films, Opt. Mater. 73 (2017) 550-554.

DOI: 10.1016/j.optmat.2017.09.018

Google Scholar

[21] A. Sharma, M. Chawla, D. Gupta, R. Kumari, M. Bura, N. Shekhawat, S. Aggarwal, Low energy B+ implantation induced optical and structural characteristics of aliphatic and aromatic polymers, Vacuum 159 (2019) 306-314.

DOI: 10.1016/j.vacuum.2018.10.058

Google Scholar

[22] D.D. Kisic, M.T. Nenadovic, J.M. Potocnik, M. Novakovic, P. Noga, D. Vana, A. Zavacka, Z.L. Rakocevic, Surface layer morphology of the high fluence Fe implanted polyethylene - Correlation with the magnetic and optical behavior, Vacuum 171 (2020) 109016 (1-9).

DOI: 10.1016/j.vacuum.2019.109016

Google Scholar

[23] P. Chhokkar, V. Kumar, P.K. Goyal, S. Kumar, A.K. Tomar, A. Gaur, A. Arya, Argon ion implanted CR-39 polymer: Optical and structural characterization, Opt. Mater. 115 (2021) 111046 (1-7).

DOI: 10.1016/j.optmat.2021.111046

Google Scholar

[24] P. Chhokkar, V. Kumar, P.K. Goyal, S. Kumar, A.K. Tomar, A. Gaur, A. Arya, Role of energy loss-range profile of heavy ions in tailoring the optical properties of polycarbonate, Opt. Mater 121 (2021) 111617 (1-7).

DOI: 10.1016/j.optmat.2021.111617

Google Scholar

[25] S. Arif, M.S. Rafique, F. Saleemi, R. Sagheer, F. Naab, O. Toader, A. Mahmood, R. Rashid, M. Mahmood, Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA, Nucl. Instrum. Methods Phys. Res. B 358 (2015) 236-244.

DOI: 10.1016/j.nimb.2015.06.041

Google Scholar

[26] R. Sagheer, M.S. Rafique, F. Saleemi, S. Arif, F. Naab, O. Toader, A. Mahmood, R. Rashid, I. Hussain, Modification in surface properties of poly-allyl-diglycol-carbonate (CR-39) implanted by Au+ ions at different fluences, Mater. Sci. Pol. 34 (2016) 468-478.

DOI: 10.1515/msp-2016-0067

Google Scholar

[27] S. Arif, M.S. Rafique, F. Saleemi, F. Naab, O. Toader, A. Mahmood, U. Aziz, Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA, Appl. Phys. A: Mater. Sci. Proc. 122 (2016) 866 (1-11).

DOI: 10.1007/s00339-016-0388-x

Google Scholar

[28] A.N. Akhtar, G. Murtaza, M.A. Shafique, A.S. Haidyrah, Effect of Cu ions implantation on structural, electronic, optical and dielectric properties of polymethyl methacrylate (PMMA), Polymers 13 (2021) 973 (1-14).

DOI: 10.3390/polym13060973

Google Scholar

[29] A.M. Abdul-Kader, A.M. Salem, A.H. Al-Omari, Y.A. El-Gendy, A. Al-Rashdi, Improve the structure and optical surface properties of LDPE by ion bombardment technique, Opt. Mater. 114 (2021) 110940 (1-7).

DOI: 10.1016/j.optmat.2021.110940

Google Scholar

[30] I.V. Vasenina, K.P. Savkin, O.A. Laput, D.N. Lytkina, V.V. Botvin, A.V. Medovnik, I.A. Kurzina, Effects of ion- and electron-beam treatment on surface physicochemical properties of polytetrafluoroethylene, Surf. Coat. Technol. 334 (2018) 134-141.

DOI: 10.1016/j.surfcoat.2017.11.035

Google Scholar

[31] M. Manso, A. Valsesia, M. Lejeune, D. Gilliland, G. Ceccone, F. Rossi, Tailoring surface properties of biomedical polymers by implantation of Ar and He ions, Acta Biomater. 1 (2005) 431-440.

DOI: 10.1016/j.actbio.2005.03.003

Google Scholar

[32] W. Zhang, Y. Luo, H. Wang, J. Jiang, S. Pu, P. Chu, Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation, Acta Biomater. 4 (2008) 2028-2036.

DOI: 10.1016/j.actbio.2008.05.012

Google Scholar

[33] V.N. Popok, I.A. Karpovich, V.B. Odzhaev, D.V. Sviridov, Structure evolution of implanted polymers: buried conductive layers formation, Nucl. Instrum. Meth. B 148 (1999) 1106-1110.

DOI: 10.1016/s0168-583x(98)00799-x

Google Scholar

[34] Y. Koval, M.V. Fistul, P. Müller, Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions, J. Vac. Sci. Technol. A 23 (2005) 1375-1378.

DOI: 10.1116/1.2006136

Google Scholar

[35] Y. Yun, C. Pearson, D.H. Cadd, R.L. Thompson M.C. Petty, A cross-linked poly(methylmethacrylate) gate dielectric by ion-beam irradiation for organic thin-film transistors, Org. Electron. 10 (2009) 1596-1600.

DOI: 10.1016/j.orgel.2009.09.007

Google Scholar

[36] Y. Koval, I. Lazareva, P. Müller, K. Müller, K. Henkel, D. Friedrich, Field effect transistors on graphitized polymer surfaces, Phys. Status Solidi (b) 248 (2011) 299-308.

DOI: 10.1002/pssb.201046455

Google Scholar

[37] G.B. Hadjichristov, V. Ivanov, E. Faulques, Reflectivity modification of polymethylmethacrylate by silicon ion implantation, Appl. Surf. Sci. 254 (2008) 4820-4827.

DOI: 10.1016/j.apsusc.2008.01.115

Google Scholar

[38] G.B. Hadjichristov, I.L. Stefanov, B.I. Florian, G.D. Blaskova, V.G. Ivanov, F. Faulques, Optical reflectivity study of silicon ion implanted poly(methyl methacrylate), Appl. Surf. Sci. 256 (2009) 779-786.

DOI: 10.1016/j.apsusc.2009.08.059

Google Scholar

[39] G.B. Hadjichristov, I.L. Stefanov, Ion-implanted polymethyl methacrylate beam splitter/coupler for 1.55 μm applications, Appl. Opt. 49 (2010) 1876-1879.

DOI: 10.1364/ao.49.001876

Google Scholar

[40] G. B. Hadjichristov, I. L. Stefanov, Laser beam reflection by nano-designed two-layer nanostructured carbonic material formed in transparent hydrocarbon polymer by ion implantation, Proc. SPIE 11332 (2019) 1133208 (1-10).

DOI: 10.1117/12.2548745

Google Scholar

[41] S.C. Russev, G.G. Tsutsumanova, I.L. Stefanov, G.B. Hadjichristov, Ellipsometrical characterization of complex refractive index depth profile of 50 keV silicon ion implanted PMMA, Vacuum 94 (2013) 19-25.

DOI: 10.1016/j.vacuum.2013.01.014

Google Scholar

[42] G.B. Hadjichristov, V.K. Gueorguiev, Tz.E. Ivanov, Y.G. Marinov, V.G. Ivanov, E. Faulques, Silicon ion implanted PMMA for soft electronics, Org. Electron. 9 (2008) 1051-1060.

DOI: 10.1016/j.orgel.2008.08.003

Google Scholar

[43] A. Moliton, C. Moreau, J.P. Moliton, Transport phenomena in implanted electroactive polymers, Nucl. Instrum. Meth. Phys. Res. B 80-81 (1993) 1028-1035.

DOI: 10.1016/0168-583x(93)90730-t

Google Scholar

[44] J.F Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter, SRIM Co., Chester (Maryland), USA, (2008).

Google Scholar

[45] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - The stopping and range of ions in matter, Nucl. Instrum. Meth. Phys. Res. Section B: Beam Interactions with Materials and Atoms 268 (2010) 1818-1823.

DOI: 10.1016/j.nimb.2010.02.091

Google Scholar

[46] J.F. Ziegler, SRIM 2013 software package, SRIM.EXE, (C) 1984-2013, available online at http://www.srim.org.

Google Scholar

[47] J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J. Golovchenko, Ion-beam sculpting at nanometre length scales, (2001) 412 (2001) 166-169.

DOI: 10.1038/35084037

Google Scholar

[48] V.G. Ivanov, G. Hadjichristov, E. Faulques, Characterization of chemical bonding in ion-implanted polymers by means of mid-infrared reflectivity, Appl. Spectrosc. 63 (2009) 1014-1018.

DOI: 10.1366/000370209789379286

Google Scholar

[49] G. Marletta, Ion-beam modification of polymer surfaces for biological applications, in: H. Bernas (Ed.), Materials Science with Ion Beams, Topics in Applied Physics, Vol. 116, Springer-Verlag, Berlin, 2010, pp.345-369.

DOI: 10.1007/978-3-540-88789-8_12

Google Scholar

[50] L. Guzman, R. Celva, A. Miotello, E. Voltolini, F. Ferrari, M. Adami, Polymer surface modification by ion implantation and reactive deposition of transparent films, Surf. Coat. Technol. 103-104 (1998) 375-379.

DOI: 10.1016/s0257-8972(98)00430-7

Google Scholar

[51] N. Shekhawat, S. Aggarwal, A. Sharma, S.K. Sharma, S.K. Deshpande, K.G.M. Nair, Surface disordering and its correlations with properties in argon implanted CR-39 polymer, J. Appl. Phys. 109 (2011) 083513 (1-9).

DOI: 10.1063/1.3573480

Google Scholar

[52] N. Shekhawat, A. Sharma, S. Aggarwal, K.G.M. Nair, Refractive index engineering in polycarbonate implanted by 100 keV N+ ions, Opt. Eng. 50 (2011) 044601 (1-7).

DOI: 10.1117/1.3562325

Google Scholar

[53] A Sharma, S Aggarwal, P Kumar, D Kanjilal, Kr+ ion implantation-induced changes in optical properties of polycarbonate, Int. J. Polym. Mater. 62 (2013) 1-4.

DOI: 10.1080/00914037.2011.610066

Google Scholar

[54] G. Marletta, F. Iacona, Chemical and physical property modifications induced by ion irradiation in polymers, in: Y. Pauleau (Ed.), Materials and Processes for Surface and Interface Engineering, NATO ASI Series E: Applied Science, Vol. 290, Springer Science + Business Media, BV, Dordrecht, The Netherlands, 1995, pp.97-640.

DOI: 10.1007/978-94-011-0077-9_16

Google Scholar

[55] V.N. Popok, I.I. Azarko, V.B. Odzhaev, A. Toth, R.I. Khaibullin, High fluence ion beam modification of polymer surfaces: EPR and XPS studies, Nucl. Instrum. Meth. Phys. Res. B 178 (2001) 305-310.

DOI: 10.1016/s0168-583x(00)00491-2

Google Scholar

[56] V.N. Popok, I.I. Azarko, R.I. Khaibullin, A.L. Sepanov, V. Hnatowicz, A. Mackova, S.V. Prasalovich, Radiation-induced change of polyimide properties under high-fluence and high ion current density implantation, Appl. Phys. A 78 (2004) 1067-1072.

DOI: 10.1007/s00339-003-2166-9

Google Scholar

[57] V. Popok, Compositional and structural alterations of polymers under low-to-medium energy ion implantation, in: C.P. Noris (Ed.), Surface Science Research, Nova Science, New York, 2005, Chap. 7, pp.147-193.

Google Scholar

[58] V.N. Popok, Ion implantation of polymers: formation of nanoparticulate materials, Rev. Adv. Mater. Sci. 30 (2012) 1-26.

Google Scholar

[59] Y. Wu, C. Sun, J. Xiao, R. Li, D. Yang, S. He, A study on the free-radical evolution and its correlation with the optical degradation of 179 keV proton-irradiated polyimide, Polym. Degrad. Stab. 95 (2010) 1219-1225.

DOI: 10.1016/j.polymdegradstab.2010.03.033

Google Scholar

[60] G. Marletta, Chemical reactions and physical property modifications induced by keV ion beams in polymers, Nucl. Instrum. Meth. Phys. Res. Section B: Beam Interactions with Materials and Atoms 46 (1990) 295-305.

DOI: 10.1016/0168-583x(90)90716-8

Google Scholar

[61] D. Fink (Ed.), Transport Processes in Ion-Irradiated Polymers, Springer Series in Materials Science, Vol. 65, Springer-Verlag, Berlin, (2004).

Google Scholar

[62] D.I. Jones, A.D. Stewart, Properties of hydrogenated amorphous carbon films and the effects of doping, Philos. Mag. B 46 (1982) 423-434.

DOI: 10.1080/01418638208224021

Google Scholar

[63] J. Robertson, E.P. O'Reilly, Electronic and atomic structure of amorphous carbon, Phys. Rev. B 35 (1987) 2946-2957.

Google Scholar

[64] J. Davenas, P. Thevenard, G. Boiteux, M. Fallavier, X.L. Lu, Hydrogenated carbon layers produced by ion beam irradiation of PMMA and polystyrene films, Nucl. Instrum. Meth. Phys. Res. B 46 (1990) 317-323.

DOI: 10.1016/0168-583x(90)90720-f

Google Scholar

[65] S. Arif, M.S. Rafique, F. Saleemi, F. Naab, O. Toader, R. Sagheer, S. Bashir, R. Zia, K. Siraj, S. Iqbal, Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate, Nucl. Instrum. Methods Phys. Res. B 381 (2016) 114-121.

DOI: 10.1016/j.nimb.2016.05.028

Google Scholar

[66] S. Arif, F. Saleemi, M.S. Rafique, F. Naab, O. Toader, A. Mahmood, U. Aziz, Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate), Nucl. Instrum. Meth. Phys. Res. B 387 (2016) 86-95.

DOI: 10.1016/j.nimb.2016.09.024

Google Scholar

[67] S. Arif, M.S. Rafique, F. Saleemi, R. Sagheer, Effect of structural transformation of C+-ion implanted PMMA into quasi-continuous carbonaceous layer on its optical and electrical properties, Opt. Mater. 76 (2018) 147-154.

DOI: 10.1016/j.optmat.2017.12.021

Google Scholar

[68] D.L. Baptista, F.C. Zawislak, Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C: H films, Diam. Relat. Mater. 13 (2004) 1791-1801.

DOI: 10.1016/j.diamond.2004.04.006

Google Scholar

[69] V.G. Ivanov, G.B. Hadjichristov, Orientation of sp2 carbon nanoclusters in ion-implanted polymethylmethacrylate as revealed by polarized Raman spectroscopy, J. Raman Spectrosc. 42 (2011)1340-1343.

DOI: 10.1002/jrs.2847

Google Scholar

[70] Y.Q. Wang, Ion beam analysis of ion-implanted polymer thin fims, Nucl. Instrum. Meth. Phys. Res. B 161-163 (2000) 1027-1032.

Google Scholar

[71] S. Bhattacharyya, S.V. Subramanyam, Polymer conducting carbon films: Fundamentals, structure, properties, and applications, in: D.L. Wise, G.E. Wnek, D.J. Trantolo, T.M. Cooper, J.D. Gresser (Eds.), Electrical and Optical Polymer Systems – Fundamentals, Methods and Applications, Marcel Dekker, New York, 1998, Chap. 7, pp.201-296.

DOI: 10.1201/9781482269888-13

Google Scholar

[72] D. Dasgupta, F. Demichelis, A. Tagliaferro, Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon, Philos. Mag. B 63 (1991) 1255-1266.

DOI: 10.1080/13642819108205558

Google Scholar

[73] M. Tomidokoro, S. Tunmee, U. Rittihong, C. Euaruksakul, R. Supruangnet, H. Nakajima, Y. Hirata, N. Ohtake, H. Akasaka, Electrical conduction properties of hydrogenated amorphous carbon films with different structures, Materials 14 (2021) 2355 (1-11).

DOI: 10.3390/ma14092355

Google Scholar

[74] P. Hesto, The nature of electronic conduction in thin insulating films, in: G. Barbottin, A. Vapaille (Eds.), Instabilities in Silicon Devices, Vol. 1, North Holland, Amsterdam, The Netherlands, 1986, Chap. 5, pp.263-314.

Google Scholar

[75] I. Lazareva, Y. Koval, M. Alam, S. Strömsdörfer, P. Müller, Graphitization of polymer surfaces by low-energy ion irradiation, Appl. Phys. Lett 90 (2007) 262108 (1-3).

DOI: 10.1063/1.2752738

Google Scholar

[76] G. Horowitz, Organic Transistors, in: H. Klauk (Ed.), Organic Electronics: Materials, Manufacturing, and Applications, Wiley-VCH, Weinheim, Germany, 2006, Chap.1, pp.3-32.

Google Scholar

[77] M. Waldrip, O.D. Jurchescu, D.J. Gundlach, E.G. Bittle, Contact resistance in organic field-effect transistors: Conquering the barrier, Adv. Funct. Mater. 30 (2020) 1904576 (1-31).

DOI: 10.1002/adfm.201904576

Google Scholar

[78] M.G. Kane, Organic and polymeric TFTs for flexible displays and circuits, in: W.S. Wong, A. Salleo (Eds.), Flexible Electronics: Materials and Applications, Electronic Materials: Science & Technology, Vol. 11, Springer, New York, 2009, Chap. 8, pp.215-260.

DOI: 10.1007/978-0-387-74363-9_8

Google Scholar

[79] O. Marinov, M.J. Deen, U. Zschieschang, H. Klauk, Organic thin-film transistors: Part I – Compact DC modeling, IEEE Trans. Electron. Dev. 56 (2009) 2952-2961.

DOI: 10.1109/ted.2009.2033308

Google Scholar

[80] C. Melzer, H. von Seggern, Organic field-effect transistors for CMOS devices, in: G. Meller, T. Grasser (Eds.), Organic Electronics, Advances in Polymer Science, Vol. 223, Springer, Berlin, 2010, pp.213-257.

DOI: 10.1007/12_2009_9

Google Scholar

[81] F. Li, A. Nathan, Y. Wu, B.S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach, Wiley-VCH,Weinheim, Germany, 2011, Chap. 2: Organic Thin Film Transistor (OTFT) Overview, 2.2.2. Contact Resistance Extraction.

DOI: 10.1002/9783527634446.ch2

Google Scholar

[82] P. Stallinga, H.L. Gomes, Modeling electrical characteristics of thin-film field-effect transistors: I. Trap-free materials, Synth. Met. 156 (2006) 1305-1315.

DOI: 10.1016/j.synthmet.2006.09.015

Google Scholar

[83] S. Mansouri, M. Mahdouani, A. Oudir, S. Zorai, S.B. Dkhil, G. Horowitz, R. Bourguiga, Analytic model for organic thin film transistors (OTFTs): effect of contact resistances application to the octithiophene, Eur. Phys. J. Appl. Phys. 48 (2009) 30401 (1-10).

DOI: 10.1051/epjap/2009163

Google Scholar

[84] D. Natali, L. Fumagallli, M. Sampietro, Modeling of organic thin film transistors: Effect of contact resistances, J. Appl. Phys.101 (2007) 014501 (1-12).

DOI: 10.1063/1.2402349

Google Scholar

[85] G. Horowitz, M.E. Hajlaoui, Grain size dependent mobility in polycrystalline organic field-effect transistors, Synth. Met. 122 (2001) 185-189.

DOI: 10.1016/s0379-6779(00)01351-5

Google Scholar

[86] R. Bourguiga, M. Mahdouani, S. Mansouri, G. Horowitz, Extracting parameters from the current-voltage characteristics of polycrystalline octithiophene thin film field-effect transistors, Eur. Phys. J. Appl. Phys. 39 (2007) 7-16.

DOI: 10.1051/epjap:2007101

Google Scholar

[87] P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, Modeling of organic thin film transistors with different designs, J. Appl. Phys. 88 (2000) 6594-6597.

DOI: 10.1063/1.1323534

Google Scholar

[88] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, Contact resistance in organic thin film transistors, Solid-State Electron. 47 (2003) 297-301.

DOI: 10.1016/s0038-1101(02)00210-1

Google Scholar

[89] P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, Contact resistance extraction in pentacene thin film transistors, Solid State Electron. 47 (2003) 259-262.

DOI: 10.1016/s0038-1101(02)00204-6

Google Scholar

[90] G.B. Blanchet, C.R. Fincher, M. Lefenfeld, J.A. Rogers, Contact resistance in organic thin film transistors, App. Phys. Lett. 84 (2004) 296-298.

DOI: 10.1063/1.1639937

Google Scholar

[91] M.J. Deen, O. Marinov, U. Zschieschang, H. Klauk, Organic thin-film transistors: Part II – Parameter extraction, IEEE Trans. Electron. Dev. 56 (2009) 2962-2968.

DOI: 10.1109/ted.2009.2033309

Google Scholar

[92] L. Mariucci, M. Rapisarda, A. Valletta, G. Fortunato, Contact effects in organic thin-film transistors: device physics and modeling, in: J. Chen, W. Cranton, M. Fihn (Eds.), Handbook of Visual Display Technology, Springer, Cham, Switzerland, 2016, pp.945-969.

DOI: 10.1007/978-3-319-14346-0_176

Google Scholar

[93] M. Krammer, J.W. Borchert, A. Petritz, E. Karner-Petritz, G. Schider, B. Stadlober, H. Klauk, K. Zojer, Critical evaluation of organic thin-film transistor models, Crystals 9 (2019) 85 (1-18).

DOI: 10.3390/cryst9020085

Google Scholar

[94] Y. Xu, Y. Li, S. Li, F. Balestra, G. Ghibaudo, W. Li, Y.F. Lin, H. Sun, J. Wan, X. Wang, Y. Guo, Y. Shi, Y.Y. Noh, Precise extraction of charge carrier mobility for organic transistors, Adv. Funct. Mater. 30 (2020) 1904508 (1-23).

DOI: 10.1002/adfm.201904508

Google Scholar

[95] Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, G. Ghibaudo, Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors, J. Appl. Phys. 107 (2010) 114507 (1-7).

DOI: 10.1063/1.3432716

Google Scholar

[96] Y. Xu, H. Sun, A. Liu, H. Zhu, B. Li, T. Minari, F. Balestra, G. Ghibaudo, Y.Y. Noh, Essential effects on the mobility extraction reliability for organic transistors, Adv. Funct. Mater. 28 (2018) 1803907 (1-14).

DOI: 10.1002/adfm.201803907

Google Scholar

[97] Y. Xu, M. Benwadih, R. Gwoziecki, R. Coppard, T. Minari, C. Liu, K. Tsukagoshi, J. Chroboczek, F. Balestra, G. Ghibaudo, Carrier mobility in organic field-effect transistors, J. Appl. Phys. 110 (2011) 104513 (1-9).

DOI: 10.1063/1.3662955

Google Scholar

[98] T. Yang, Q. Wu, F. Dai, K. Huang, H. Xu, C. Liu, C. Chen, S. Hu, X. Liang, X. Liu, Y.Y. Noh, C. Liu, Understanding, optimizing, and utilizing nonideal transistors based on organic or organic hybrid semiconductors, Adv. Funct. Mater. (2020) 1903889 (1-39).

DOI: 10.1002/adfm.201903889

Google Scholar

[99] Y. Duan, B. Zhang, S. Zou, C. Fang, Q. Wang, Y. Shi, Y. Li, Low-power-consumption organic field-effect transistors, J. Phys.: Mater. 3 (2020) 014009 (1-14).

DOI: 10.1088/2515-7639/ab6305

Google Scholar

[100] L. Luo, W. Huang, C. Yang, J. Zhang, Q. Zhang, Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors, Front. Phys. 16 (2021) 33500 (1-32).

DOI: 10.1007/s11467-020-1045-6

Google Scholar

[101] M. Kim, S.U. Ryu, S.A. Park, K. Choi, T. Kim, D. Chung, T. Park, Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: A progress report. Adv. Funct. Mater. 30 (2020) 1904545 (1-25).

DOI: 10.1002/adfm.201904545

Google Scholar

[102] P. Hu, X. He, H. Jiang, Greater than 10 cm2 V−1 s−1: A breakthrough of organic semiconductors for field-effect transistors, InfoMat 3 (2021) 613-630.

DOI: 10.1002/inf2.12188

Google Scholar

[103] A. Foulani, Drift mobility measurements in a-C:H films by time-resolved electroluminescence, Appl. Surf. Sci. 202 (2002) 206-210.

DOI: 10.1016/s0169-4332(02)00898-x

Google Scholar

[104] C. Rolin, E. Kang, J.h. Lee, G. Borghs, P. Heremans, J. Genoe, Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method, Nat. Commun. 8 (2017) 14975 (1-9).

DOI: 10.1038/ncomms14975

Google Scholar

[105] D. Li, S. Li, W. Lu, S. Feng, P. Wei, Y. Hu, X. Wang, G. Lu, Rapidly measuring charge carrier mobility of organic semiconductor films upon a point-contact four-probes method, IEEE J. Electron Devices Soc. 7 (2018) 303-308.

DOI: 10.1109/jeds.2018.2872714

Google Scholar

[106] J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem. 4 (2018) 2748-2785.

DOI: 10.1016/j.chempr.2018.08.005

Google Scholar

[107] T. Nematiaram, D. Padula, A. Landi, A. Troisi, On the largest possible mobility of molecular semiconductors and how to achieve it, Adv. Funct. Mater. 30 (2020), 2001906 (1-10).

DOI: 10.1002/adfm.202001906

Google Scholar

[108] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater. 19 (2020) 491-502.

DOI: 10.1038/s41563-020-0647-2

Google Scholar

[109] N. Dwivedi, S. Kumar, H.K. Malik, Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells, J. Appl. Phys. 111 (2012) 014908(1-16).

DOI: 10.1063/1.3675164

Google Scholar

[110] Y. Shi, Y. Zheng, J. Wang, R. Zhao, T. Wang, C. Zhao, K.C. Chang, H. Meng, X. Wang, Hysteresis-free, high-performance polymer-dielectric organic field-effect transistors enabled by supercritical fluid, Research 2020 (2020) 6587102 (1-10).

DOI: 10.34133/2020/6587102

Google Scholar

[111] G. Lee, H.L. Park, S.H. Lee, M.H. Kim, S.D. Lee, Enhancement of charge injection in organic field-effect transistors through semiconducting organic buffer layer, J. Nanosci. Nanotechnol. 21 (2021) 3923-3928.

DOI: 10.1166/jnn.2021.19242

Google Scholar

[112] C.Y. Han, W.M. Tang, P.T. Lai, High-mobility pentacene organic thin-film transistors achieved by reducing remote phonon scattering and surface-roughness scattering, Appl. Surf. Sci. 544 (2021) 148656 (1-7).

DOI: 10.1016/j.apsusc.2020.148656

Google Scholar

[113] X. Wu, R. Jia, J. Pan, J. Wang, W. Deng, P. Xiao, X. Zhang, J. Jie, Improving ideality of p-type organic field-effect transistors via preventing undesired minority carrier injection, Adv. Funct. Mater. 31(19) (2021) 2100202 (1-10).

DOI: 10.1002/adfm.202100202

Google Scholar

[114] H.F. Iqbal, Q. Ai, K.J, Thorley, H. Chen, I. McCulloch, C. Risko, J.E. Anthony, O.D. Jurchescu, Suppressing bias stress degradation in high performance solution processed organic transistors operating in air, Nat. Commun. 12 (2021) 2352 (1-10).

DOI: 10.1038/s41467-021-22683-2

Google Scholar

[115] X. Zou, S. Cui, J. Li, X. Wei, M. Zheng, Diketopyrrolopyrrole based organic semiconductor materials for field-effect transistors, Front. Chem. 9 (2021) 671294 (1-6).

DOI: 10.3389/fchem.2021.671294

Google Scholar

[116] Y. Yadav, S.K. Ghosh, S.P. Singh, High-performance organic field-effect transistors gated by imidazolium-based ionic liquids, ACS Appl. Electron. Mater. 3 (2021) 1496-1504.

DOI: 10.1021/acsaelm.1c00117

Google Scholar

[117] Molecular structure retrieved from https://pslc.ws/modelhtms/pmmapdb.htm.

Google Scholar

[118] Molecular model retrieved from https://www.molecular-networks.com.

Google Scholar