Controlling Water Flow in Pattern-Charged Nanotubes

Article Preview

Abstract:

Molecular dynamics simulation is used to study the water flow in a charged nanotube. The simulation results show that the charge patterns on the nanotube have an important role in determining the flow behavior. In a nanotube charged with one pattern, the water flow rate decreases with increasing charge value, when the charge value increases from 0 to 0.8 e, the water flow rate decreases to 7%. While in the other one with a different charge pattern, the water flow rate is independent of charge value. By analyzing the morphology of water molecules, it is determined that this unexpected phenomenon is caused by the structure of water molecules near the nanotube wall. For the first charge pattern, the network of hydrogen bonds formed by water molecules near the wall had a hexagonal structure, similar to single layer ice, which changes the interactions between the wall and the water molecules. By contrast, the second pattern did not exhibit such an effect. This study provides a means to control the rate of water flow in nanotubes using an electric field. These results may provide new insights and lead to new methods for flow control in complex micro- or nanofluidic systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (2001) 188.

DOI: 10.1038/35102535

Google Scholar

[2] S. Joseph, N. Aluru, Why are carbon nanotubes fast transporters of water?, Nano Lett. 8 (2008) 452.

DOI: 10.1021/nl072385q

Google Scholar

[3] H. Ye, H. Zhang, Z. Zhang, Y. Zheng, Size and temperature effects on the viscosity of water inside carbon nanotubes, Nanoscale Res. Lett. 6 (2011) 87.

DOI: 10.1186/1556-276x-6-87

Google Scholar

[4] W. Li, W. Wang, Y. Zhang, Y. Yan, P. Král, J. Zhang, Highly efficient water desalination in carbon nanocones, Carbon 129 (2018) 374.

DOI: 10.1016/j.carbon.2017.12.039

Google Scholar

[5] J. Liu, G. Shi, P. Guo, J. Yang, H. Fang, Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings, Phys. Rev. Lett. 115 (2015) 164502.

DOI: 10.1103/physrevlett.115.164502

Google Scholar

[6] C.T. David, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141 (2014) 074704.

DOI: 10.1063/1.4896215

Google Scholar

[7] V.P. Kurupath, S.K. Kannam, R. Hartkamp, S.P. Sathian, Highly efficient water desalination through hourglass shaped carbon nanopores, Desalination 505 (2021) 114978.

DOI: 10.1016/j.desal.2021.114978

Google Scholar

[8] A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9 (2005) 674.

Google Scholar

[9] M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues, Nanomed. Nanotechnol. Biol. Med. 4 (2008) 183.

DOI: 10.1201/b22358-19

Google Scholar

[10] H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun. 4 (2013) 2979.

DOI: 10.1038/ncomms3979

Google Scholar

[11] Y. Liu, Y. Su, J. Cao, J. Guan, L. Xu, R. Zhang, M. He, Q. Zhang, L. Fan, Z. Jiang, Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation, Nanoscale 9 (2017) 7508.

DOI: 10.1039/c7nr00818j

Google Scholar

[12] B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112 (2008) 1427.

DOI: 10.1021/jp709845u

Google Scholar

[13] K. Koga, G. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802.

DOI: 10.1038/35090532

Google Scholar

[14] M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature 438 (2005) 44.

DOI: 10.1038/438930b

Google Scholar

[15] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034.

DOI: 10.1126/science.1126298

Google Scholar

[16] E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Massive radius-dependent flow slippage in carbon nanotubes, Nature 537 (2016) 210.

DOI: 10.1038/nature19315

Google Scholar

[17] A. Sam, R. Hartkamp, S.K. Kannam, J.S. Babu, S.P. Sathian, P.J. Daivis, B. Todd, Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges, Mol. Simulat. 47 (2021) 905.

DOI: 10.1080/08927022.2020.1782401

Google Scholar

[18] M. Rezaee, H. Ghassemi, Anomalous behavior of fluid flow through thin carbon nanotubes, Theor. Comp. Fluid Dyn. 34 (2020) 177.

DOI: 10.1007/s00162-020-00521-3

Google Scholar

[19] A. Sam, V. Prasad, S.P. Sathian, Water flow in carbon nanotubes: the role of tube chirality, Phys. Chem. Chem. Phys. 21 (2019) 6566.

DOI: 10.1039/c9cp00429g

Google Scholar

[20] A. Panahi, P. Sadeghi, A. Akhlaghi, M.H. Sabour, Investigating the effect of single-walled carbon nanotubes chirality on the electrokinetics transport of water and ions: A molecular dynamics study, Diam. Relat. Mater. 110 (2020) 108105.

DOI: 10.1016/j.diamond.2020.108105

Google Scholar

[21] R. Zhang, Y. Xu, B. Wen, N. Sheng, H. Fang, Enhanced permeation of a hydrophobic fluid through particles with hydrophobic and hydrophilic patterned surfaces, Sci. rep. 4 (2014) 1.

DOI: 10.1038/srep05738

Google Scholar

[22] R. Zhang, Q. Di, X. Wang, W. Ding, W. Gong, Numerical study of the relationship between apparent slip length and contact angle by Lattice Boltzmann Method, J. Hydrodyn. 24 (2012) 535.

DOI: 10.1016/s1001-6058(11)60275-8

Google Scholar

[23] P. Liu, X. Huang, R. Zhou, B. Berne, Observation of a dewetting transition in the collapse of the melittin tetramer, Nature 437 (2005) 159.

DOI: 10.1038/nature03926

Google Scholar

[24] R. Zhou, X. Huang, C. J. Margulis, B. J. Berne, Hydrophobic collapse in multidomain protein folding, Science 305 (2004) 1605.

DOI: 10.1126/science.1101176

Google Scholar

[25] A. Striolo, From Interfacial Water to Macroscopic Observables: A Review, Adsorpt. Sci. Technol. 29 (2011) 211.

Google Scholar

[26] R. Zhang, Q. Di, X. Wang, C. Gu, Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by Lattice Boltzmann Method, J. Hydrodyn. 22 (2010) 366.

DOI: 10.1016/s1001-6058(09)60066-4

Google Scholar

[27] J. Klein, E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269 (1995) 816.

DOI: 10.1126/science.269.5225.816

Google Scholar

[28] A. Kalra, S. Garde, G. Hummer, Osmotic water transport through carbon nanotube membranes, P. Natl. Acad. Sci. USA 100 (2003) 10175.

DOI: 10.1073/pnas.1633354100

Google Scholar

[29] A. I. Kolesnikov, J.M. Zanotti, C.K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham, Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement, Phys. Rev. Lett. 93 (2004) 035503.

DOI: 10.1103/physrevlett.93.035503

Google Scholar

[30] Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, Y. Okabe, Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes., Chem. Phys. Lett. 401 (2005) 534.

DOI: 10.1016/j.cplett.2004.11.112

Google Scholar

[31] G. Algara-Siller, O. Lehtinen, F. Wang, R. Nair, U. Kaiser, H. Wu, A. Geim, I. Grigorieva, Square ice in graphene nanocapillaries, Nature 519 (2015) 443.

DOI: 10.1038/nature14295

Google Scholar

[32] J. Deng, Y. You, H. Bustamante, V. Sahajwalla, R. K. Joshi, Mechanism of water transport in graphene oxide laminates, Chem. Sci. 8 (2017) 1701.

DOI: 10.1039/c6sc03909j

Google Scholar

[33] C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates, Phys. Rev. Lett. 103 (2009) 137801.

DOI: 10.1103/physrevlett.103.137801

Google Scholar

[34] C. Wang, L. Zhao, D. Zhang, J. Chen, G. Shi, H. Fang, Upright or Flat Orientations of the Ethanol Molecules on a Surface with Charge Dipoles and the Implication for Wetting Behavior, J. Phys. Chem. C 118 (2014) 1873.

DOI: 10.1021/jp4062016

Google Scholar

[35] D. Argyris, P.D. Ashby, A. Striolo, Structure and orientation of interfacial water determine atomic force microscopy results: Insights from molecular dynamics simulations, ACS Nano 5 (2011) 2215.

DOI: 10.1021/nn103454m

Google Scholar

[36] M. James, T.A. Darwish, S. Ciampi, S.O. Sylvester, Z. Zhang, A. Ng, J.J. Gooding, T.L. Hanley, Nanoscale condensation of water on self-assembled monolayers, Soft Matter 7 (2011) 5309.

DOI: 10.1039/c1sm05096f

Google Scholar

[37] X. Zhou, C. Wang, F. Wu, M. Feng, J. Li, H. Lu, R. Zhou, The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube, J. Chem. Phys. 138 (2013) 204710.

DOI: 10.1063/1.4807383

Google Scholar

[38] Z. Zhang, H. Ye, Z. Liu, J. Ding, G. Cheng, Z. Ling, Y. Zheng, L. Wang, J. Wang, Carbon nanotube-based charge-controlled speed-regulating nanoclutch, J. Appl. Phys. 111 (2012) 114304.

DOI: 10.1063/1.4724344

Google Scholar

[39] R.Zhang, G. Du, M. Wang, W. Yu, J. Chen, Capillary imbibition in pattern charged nanotubes, J. Stat. Mech: Theory Exp. 2019 (2019) 063210.

DOI: 10.1088/1742-5468/ab1f0f

Google Scholar

[40] T. Susi, G. Lanzani, A. G. Nasibulin, P. Ayala, T. Jiang, T. Bligaard, K. Laasonen, E. I. Kauppinen, Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth, Phys. Chem. Chem. Phys. 13 (2011) 11303.

DOI: 10.1039/c1cp20454h

Google Scholar

[41] A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted, A. Hirsch, Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Mater 1 (2002) 190.

DOI: 10.1038/nmat747

Google Scholar

[42] J. Chen, C. Wang, N. Wei, R. Wan, Y. Gao, 3D flexible water channel: stretchability of nanoscale water bridge, Nanoscale 8 (2016) 5676.

DOI: 10.1039/c5nr08072j

Google Scholar

[43] W. Qi, J. Chen, J. Yang, X. Lei, B. Song, H. Fang, Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations, J. Phys. Chem. B 117 (2013) 7967.

DOI: 10.1021/jp3120435

Google Scholar

[44] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Enhancement of Thermal Energy Transport in Supported Black Phosphorene, Nature 402 (1999) 276.

DOI: 10.1038/46248

Google Scholar

[45] J. Chen, S. Chen, Y. Gao, Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene, J. Phys. Chem. Lett. 7 (2016) 2518.

DOI: 10.1021/acs.jpclett.6b00858

Google Scholar

[46] P. Guo, Y. Tu, J. Yang, C. Wang, N. Sheng, H. Fang, Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers, Phys. Rev. Lett. 115 (2015) 186101.

DOI: 10.1103/physrevlett.115.186101

Google Scholar

[47] X. Nie, J. Chen, N. Sheng, L. Zeng, H. Yang, C. Wang, Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO2 substrate, Mol. Simul. 43 (2017) 1377.

DOI: 10.1080/08927022.2017.1353692

Google Scholar

[48] L. Joly, Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes, J. Chem. Phys. 135 (2011) 214705.

DOI: 10.1063/1.3664622

Google Scholar

[49] J.A. Thomas, A.J. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett. 102 (2009) 184502.

DOI: 10.1103/physrevlett.102.184502

Google Scholar

[50] A.B. Farimani, N. Aluru, Spatial diffusion of water in carbon nanotubes: From Fickian to ballistic motion, J. Phys. Chem. B 115 (2011) 12145.

DOI: 10.1021/jp205877b

Google Scholar