[1]
G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (2001) 188.
DOI: 10.1038/35102535
Google Scholar
[2]
S. Joseph, N. Aluru, Why are carbon nanotubes fast transporters of water?, Nano Lett. 8 (2008) 452.
DOI: 10.1021/nl072385q
Google Scholar
[3]
H. Ye, H. Zhang, Z. Zhang, Y. Zheng, Size and temperature effects on the viscosity of water inside carbon nanotubes, Nanoscale Res. Lett. 6 (2011) 87.
DOI: 10.1186/1556-276x-6-87
Google Scholar
[4]
W. Li, W. Wang, Y. Zhang, Y. Yan, P. Král, J. Zhang, Highly efficient water desalination in carbon nanocones, Carbon 129 (2018) 374.
DOI: 10.1016/j.carbon.2017.12.039
Google Scholar
[5]
J. Liu, G. Shi, P. Guo, J. Yang, H. Fang, Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings, Phys. Rev. Lett. 115 (2015) 164502.
DOI: 10.1103/physrevlett.115.164502
Google Scholar
[6]
C.T. David, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141 (2014) 074704.
DOI: 10.1063/1.4896215
Google Scholar
[7]
V.P. Kurupath, S.K. Kannam, R. Hartkamp, S.P. Sathian, Highly efficient water desalination through hourglass shaped carbon nanopores, Desalination 505 (2021) 114978.
DOI: 10.1016/j.desal.2021.114978
Google Scholar
[8]
A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9 (2005) 674.
Google Scholar
[9]
M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues, Nanomed. Nanotechnol. Biol. Med. 4 (2008) 183.
DOI: 10.1201/b22358-19
Google Scholar
[10]
H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun. 4 (2013) 2979.
DOI: 10.1038/ncomms3979
Google Scholar
[11]
Y. Liu, Y. Su, J. Cao, J. Guan, L. Xu, R. Zhang, M. He, Q. Zhang, L. Fan, Z. Jiang, Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation, Nanoscale 9 (2017) 7508.
DOI: 10.1039/c7nr00818j
Google Scholar
[12]
B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112 (2008) 1427.
DOI: 10.1021/jp709845u
Google Scholar
[13]
K. Koga, G. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802.
DOI: 10.1038/35090532
Google Scholar
[14]
M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature 438 (2005) 44.
DOI: 10.1038/438930b
Google Scholar
[15]
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034.
DOI: 10.1126/science.1126298
Google Scholar
[16]
E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Massive radius-dependent flow slippage in carbon nanotubes, Nature 537 (2016) 210.
DOI: 10.1038/nature19315
Google Scholar
[17]
A. Sam, R. Hartkamp, S.K. Kannam, J.S. Babu, S.P. Sathian, P.J. Daivis, B. Todd, Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges, Mol. Simulat. 47 (2021) 905.
DOI: 10.1080/08927022.2020.1782401
Google Scholar
[18]
M. Rezaee, H. Ghassemi, Anomalous behavior of fluid flow through thin carbon nanotubes, Theor. Comp. Fluid Dyn. 34 (2020) 177.
DOI: 10.1007/s00162-020-00521-3
Google Scholar
[19]
A. Sam, V. Prasad, S.P. Sathian, Water flow in carbon nanotubes: the role of tube chirality, Phys. Chem. Chem. Phys. 21 (2019) 6566.
DOI: 10.1039/c9cp00429g
Google Scholar
[20]
A. Panahi, P. Sadeghi, A. Akhlaghi, M.H. Sabour, Investigating the effect of single-walled carbon nanotubes chirality on the electrokinetics transport of water and ions: A molecular dynamics study, Diam. Relat. Mater. 110 (2020) 108105.
DOI: 10.1016/j.diamond.2020.108105
Google Scholar
[21]
R. Zhang, Y. Xu, B. Wen, N. Sheng, H. Fang, Enhanced permeation of a hydrophobic fluid through particles with hydrophobic and hydrophilic patterned surfaces, Sci. rep. 4 (2014) 1.
DOI: 10.1038/srep05738
Google Scholar
[22]
R. Zhang, Q. Di, X. Wang, W. Ding, W. Gong, Numerical study of the relationship between apparent slip length and contact angle by Lattice Boltzmann Method, J. Hydrodyn. 24 (2012) 535.
DOI: 10.1016/s1001-6058(11)60275-8
Google Scholar
[23]
P. Liu, X. Huang, R. Zhou, B. Berne, Observation of a dewetting transition in the collapse of the melittin tetramer, Nature 437 (2005) 159.
DOI: 10.1038/nature03926
Google Scholar
[24]
R. Zhou, X. Huang, C. J. Margulis, B. J. Berne, Hydrophobic collapse in multidomain protein folding, Science 305 (2004) 1605.
DOI: 10.1126/science.1101176
Google Scholar
[25]
A. Striolo, From Interfacial Water to Macroscopic Observables: A Review, Adsorpt. Sci. Technol. 29 (2011) 211.
Google Scholar
[26]
R. Zhang, Q. Di, X. Wang, C. Gu, Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by Lattice Boltzmann Method, J. Hydrodyn. 22 (2010) 366.
DOI: 10.1016/s1001-6058(09)60066-4
Google Scholar
[27]
J. Klein, E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269 (1995) 816.
DOI: 10.1126/science.269.5225.816
Google Scholar
[28]
A. Kalra, S. Garde, G. Hummer, Osmotic water transport through carbon nanotube membranes, P. Natl. Acad. Sci. USA 100 (2003) 10175.
DOI: 10.1073/pnas.1633354100
Google Scholar
[29]
A. I. Kolesnikov, J.M. Zanotti, C.K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham, Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement, Phys. Rev. Lett. 93 (2004) 035503.
DOI: 10.1103/physrevlett.93.035503
Google Scholar
[30]
Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, Y. Okabe, Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes., Chem. Phys. Lett. 401 (2005) 534.
DOI: 10.1016/j.cplett.2004.11.112
Google Scholar
[31]
G. Algara-Siller, O. Lehtinen, F. Wang, R. Nair, U. Kaiser, H. Wu, A. Geim, I. Grigorieva, Square ice in graphene nanocapillaries, Nature 519 (2015) 443.
DOI: 10.1038/nature14295
Google Scholar
[32]
J. Deng, Y. You, H. Bustamante, V. Sahajwalla, R. K. Joshi, Mechanism of water transport in graphene oxide laminates, Chem. Sci. 8 (2017) 1701.
DOI: 10.1039/c6sc03909j
Google Scholar
[33]
C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates, Phys. Rev. Lett. 103 (2009) 137801.
DOI: 10.1103/physrevlett.103.137801
Google Scholar
[34]
C. Wang, L. Zhao, D. Zhang, J. Chen, G. Shi, H. Fang, Upright or Flat Orientations of the Ethanol Molecules on a Surface with Charge Dipoles and the Implication for Wetting Behavior, J. Phys. Chem. C 118 (2014) 1873.
DOI: 10.1021/jp4062016
Google Scholar
[35]
D. Argyris, P.D. Ashby, A. Striolo, Structure and orientation of interfacial water determine atomic force microscopy results: Insights from molecular dynamics simulations, ACS Nano 5 (2011) 2215.
DOI: 10.1021/nn103454m
Google Scholar
[36]
M. James, T.A. Darwish, S. Ciampi, S.O. Sylvester, Z. Zhang, A. Ng, J.J. Gooding, T.L. Hanley, Nanoscale condensation of water on self-assembled monolayers, Soft Matter 7 (2011) 5309.
DOI: 10.1039/c1sm05096f
Google Scholar
[37]
X. Zhou, C. Wang, F. Wu, M. Feng, J. Li, H. Lu, R. Zhou, The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube, J. Chem. Phys. 138 (2013) 204710.
DOI: 10.1063/1.4807383
Google Scholar
[38]
Z. Zhang, H. Ye, Z. Liu, J. Ding, G. Cheng, Z. Ling, Y. Zheng, L. Wang, J. Wang, Carbon nanotube-based charge-controlled speed-regulating nanoclutch, J. Appl. Phys. 111 (2012) 114304.
DOI: 10.1063/1.4724344
Google Scholar
[39]
R.Zhang, G. Du, M. Wang, W. Yu, J. Chen, Capillary imbibition in pattern charged nanotubes, J. Stat. Mech: Theory Exp. 2019 (2019) 063210.
DOI: 10.1088/1742-5468/ab1f0f
Google Scholar
[40]
T. Susi, G. Lanzani, A. G. Nasibulin, P. Ayala, T. Jiang, T. Bligaard, K. Laasonen, E. I. Kauppinen, Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth, Phys. Chem. Chem. Phys. 13 (2011) 11303.
DOI: 10.1039/c1cp20454h
Google Scholar
[41]
A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted, A. Hirsch, Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Mater 1 (2002) 190.
DOI: 10.1038/nmat747
Google Scholar
[42]
J. Chen, C. Wang, N. Wei, R. Wan, Y. Gao, 3D flexible water channel: stretchability of nanoscale water bridge, Nanoscale 8 (2016) 5676.
DOI: 10.1039/c5nr08072j
Google Scholar
[43]
W. Qi, J. Chen, J. Yang, X. Lei, B. Song, H. Fang, Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations, J. Phys. Chem. B 117 (2013) 7967.
DOI: 10.1021/jp3120435
Google Scholar
[44]
H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Enhancement of Thermal Energy Transport in Supported Black Phosphorene, Nature 402 (1999) 276.
DOI: 10.1038/46248
Google Scholar
[45]
J. Chen, S. Chen, Y. Gao, Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene, J. Phys. Chem. Lett. 7 (2016) 2518.
DOI: 10.1021/acs.jpclett.6b00858
Google Scholar
[46]
P. Guo, Y. Tu, J. Yang, C. Wang, N. Sheng, H. Fang, Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers, Phys. Rev. Lett. 115 (2015) 186101.
DOI: 10.1103/physrevlett.115.186101
Google Scholar
[47]
X. Nie, J. Chen, N. Sheng, L. Zeng, H. Yang, C. Wang, Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO2 substrate, Mol. Simul. 43 (2017) 1377.
DOI: 10.1080/08927022.2017.1353692
Google Scholar
[48]
L. Joly, Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes, J. Chem. Phys. 135 (2011) 214705.
DOI: 10.1063/1.3664622
Google Scholar
[49]
J.A. Thomas, A.J. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett. 102 (2009) 184502.
DOI: 10.1103/physrevlett.102.184502
Google Scholar
[50]
A.B. Farimani, N. Aluru, Spatial diffusion of water in carbon nanotubes: From Fickian to ballistic motion, J. Phys. Chem. B 115 (2011) 12145.
DOI: 10.1021/jp205877b
Google Scholar