[1]
M.A.M. Ali, A.M. Alsabagh, M.W. Sabaa, R.A. El-Salamony, R.R. Mohamed, R.E. Morsi, Polyacrylamide hybrid nanocomposites hydrogels for efficient water treatment, Iran Polym J, 29 (2020) 455-466.
DOI: 10.1007/s13726-020-00810-y
Google Scholar
[2]
Z.A. Mahar, G.Q. Shar, A. Balouch, A.H. Pato, A.R. Shaikh, Effective and viable photocatalytic degradation of rhodamine B dye in aqueous media using CuO/PVA nanocomposites, Iran Polym J, 29 (2020) 455-466.
DOI: 10.1039/d1nj02192c
Google Scholar
[3]
S. Kumar, G. Bhanjana, N. Dilbaghi, A. Umar, Multi walled carbon nanotubes as sorbent for removal of crystal violet, J. Nanosci. Nanotechnol.14 (2014) 7054-7059.
DOI: 10.1166/jnn.2014.9236
Google Scholar
[4]
S. Kumar, G. Bhanjana, K. Jangra, N. Dilbaghi, A. Umar, Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions, J. Nanosci. Nanotechnol., 14 (2014) 4331-4336.
DOI: 10.1166/jnn.2014.8077
Google Scholar
[5]
S. Pinky, A. Ferdush, A. Kurny, F. Gulshan, Photo Degradation of Industrial Dye Using ZnO as Photo Catalyst, Int. j. innov. res. sci. eng. technol., 4 (2015) 9986-9992.
Google Scholar
[6]
S. Kumar, G. Bhanjana, R. Kumar, N. Dilbaghi, Removal of anionic dye amido black by multi-walled carbon nanotubes, J. Nanoeng. Nanomanuf. 4 (2014) 158-163.
DOI: 10.1166/jnan.2014.1186
Google Scholar
[7]
V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions, Mater. Sci. Eng. C., 32 (2012) 12-17.
DOI: 10.1016/j.msec.2011.08.018
Google Scholar
[8]
A. Ameta, R. Ameta, M. Ahuja, Photocatalytic degradation of methylene blue over ferric tungstate, SRCC., 3 (2013) 172-180.
Google Scholar
[9]
N. Muthukumaran, A.G. Prince, State of Art of the Application of Nano Materials on the Reduction of Roughness Coefficient in Open Channels, IWRA (India) Journal (Half Yearly Technical Journal of Indian Geographical Committee of IWRA), 8 (2019) 3-5.
Google Scholar
[10]
S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, Int Nano Lett, 3 (2013) 1-6.
DOI: 10.1186/2228-5326-3-30
Google Scholar
[11]
C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renew. Sust. Energ. Rev., 81 (2018) 536-551.
DOI: 10.1016/j.rser.2017.08.020
Google Scholar
[12]
L. Liu, X. Luo, Y. Li, F. Xu, Z. Gao, X. Zhang, Y. Song, H. Xu, H. Li, Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal, Colloids Surf, 537 (2018) 516-523.
DOI: 10.1016/j.colsurfa.2017.09.051
Google Scholar
[13]
N. Faleni, M.J. Moloto, Effect of glucose as stabilizer of ZnO and CdO nanoparticles on the morphology and optical properties, IJRRAS, 14 (2013) 127-135.
Google Scholar
[14]
T.K. Kundu, N. Karak, P. Barik, S. Saha, Optical properties of ZnO nanoparticles prepared by chemical method using poly (vinyl alcohol)(PVA) as capping agent, Int. j. soft comput., 1 (2011) 19-24.
Google Scholar
[15]
C. Chen, J. Liu, P. Liu, B. Yu, Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts, Adv. Chem. Engineer. Sci., 1 (2011) 9.
DOI: 10.4236/aces.2011.11002
Google Scholar
[16]
T.K. Roy, N.K. Mondal, Photocatalytic degradation of congo red dye on thermally activated zinc oxide, Int. J. Environ. Sci., 2 (2014) 457.
DOI: 10.12983/ijsres-2014-p0457-0469
Google Scholar
[17]
T. Chen, Y. Zheng, J.-M. Lin, G. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry, J. Am. Soc. Mass Spectrom., 19 (2008) 997-1003.
DOI: 10.1016/j.jasms.2008.03.008
Google Scholar
[18]
S. Al-Qaradawi, S.R. Salman, Photocatalytic degradation of methyl orange as a model compound, J. Photochem. Photobiol., 148 (2002) 161-168.
DOI: 10.1016/s1010-6030(02)00086-2
Google Scholar
[19]
C. Wang, X. Wang, B.-Q. Xu, J. Zhao, B. Mai, G. Sheng, J. Fu, Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation, J. Photochem. Photobiol., 168 (2004) 47-52.
DOI: 10.1016/j.jphotochem.2004.05.014
Google Scholar
[20]
S. Liu, J.-H. Yang, J.-H. Choy, Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange, J. Photochem. Photobiol., 179 (2006) 75-80.
DOI: 10.1016/j.jphotochem.2005.07.016
Google Scholar
[21]
C. Baiocchi, M.C. Brussino, E. Pramauro, A.B. Prevot, L. Palmisano, G. Marcı̀, Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry, Int. J. Mass Spectrom., 214 (2002) 247-256.
DOI: 10.1016/s1387-3806(01)00590-5
Google Scholar
[22]
S. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581-590.
DOI: 10.1016/j.jhazmat.2006.07.035
Google Scholar
[23]
A.B. Prevot, A. Basso, C. Baiocchi, M. Pazzi, G. Marcí, V. Augugliaro, L. Palmisano, E. Pramauro, Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye, Anal. Bioanal. Chem., 378 (2004) 214-220.
DOI: 10.1007/s00216-003-2286-2
Google Scholar
[24]
Y. Liu, X. Chen, J. Li, C. Burda, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalystss, Chemosphere, 61 (2005) 11-18.
DOI: 10.1016/j.chemosphere.2005.03.069
Google Scholar
[25]
P. Suresh, U.S. Kumari, T.S. Rao, A.P. Rao, Rapid visible light photo catalytic degradation of Eosin Y, Congo red and Methyl orange with Fe2Mo3O12 and MoO3, J. Aplicble. Chem, 3 (2014) 2047-2054.
Google Scholar
[26]
K. Zhang, W.-C. Oh, The photocatalytic decomposition of different organic dyes under UV irradiation with and without H 2 O 2 on Fe-ACF/TiO 2 photocatalysts, J. Korean Ceram. Soc., 46 (2009) 561-567.
DOI: 10.4191/kcers.2009.46.6.561
Google Scholar
[27]
H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales, J. Hazard. Mater., 141 (2007) 645-652.
DOI: 10.1016/j.jhazmat.2006.07.021
Google Scholar
[28]
R. Hong, S. Zhang, G. Di, H. Li, Y. Zheng, J. Ding, D. Wei, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull., 43 (2008) 2457-2468.
DOI: 10.1016/j.materresbull.2007.07.035
Google Scholar
[29]
M. Fu, Y. Li, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci., 258 (2011) 1587-1591.
DOI: 10.1016/j.apsusc.2011.10.003
Google Scholar
[30]
J. Zheng, Q. Jiang, J. Lian, Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate, Appl. Surf. Sci., 258 (2011) 93-97.
DOI: 10.1016/j.apsusc.2011.08.012
Google Scholar
[31]
J. Dhanalakshmi, D.P. Padiyan, Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol–gel synthesized TiO2 nanoparticles, Mater. Res. Express, 4 (2017) 095020.
DOI: 10.1088/2053-1591/aa85fd
Google Scholar
[32]
A. Eyasu, O. Yadav, R. Bachheti, Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation, Int. J. Chem. Tech. Res, 5 (2013) 1452-1461.
Google Scholar
[33]
C. Chen, P. Liu, J. Liu, B. Yu, The Investigation of Photocatalytic Activity of Nano-Sized ZnO Particles Synthesized by a Direct Precipitation Method for Degradation of Methyl Orange, submitted to J. Photochem. Photobiol.
Google Scholar
[34]
Y. Junejo, A. Baykal, Green chemical synthesis of silver nanoparticles and its catalytic activity, J Inorg Organomet Polym Mater, 24 (2014) 401-406.
DOI: 10.1007/s10904-013-9974-y
Google Scholar
[35]
G. Krishna Reddy, A. Jagannatha Reddy, R. Hari Krishna, B. Nagabhushana, G.R. Gopal, Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor, J. Asian Ceram. Soc., 5 (2017) 350-356.
DOI: 10.1016/j.jascer.2017.06.008
Google Scholar
[36]
C. Chen, B. Yu, J. Liu, Q. Dai, Y. Zhu, Investigation of ZnO films on Si< 111> substrate grown by low energy O+ assisted pulse laser deposited technology, Mater. Lett., 61 (2007) 2961-2964.
DOI: 10.1016/j.matlet.2006.10.047
Google Scholar
[37]
R. Hong, J. Li, L. Chen, D. Liu, H. Li, Y. Zheng, J. Ding, Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol., 189 (2009) 426-432.
DOI: 10.1016/j.powtec.2008.07.004
Google Scholar
[38]
O.J. Ilegbusi, L. Trakhtenberg, Synthesis and conductometric property of sol-gel-derived ZnO/PVP nano hybrid films, J. Mater. Eng. Perform., 22 (2013) 911-915.
DOI: 10.1007/s11665-012-0336-7
Google Scholar
[39]
S. Nagarajan, K. Kuppusamy, Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India, J. Nanobiotechnology, 11 (2013) 39.
DOI: 10.1186/1477-3155-11-39
Google Scholar
[40]
A. Gautam, A. Ray, S. Mukherjee, S. Das, K. Pal, S. Das, P. Karmakar, M. Ray, S. Ray, Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm, Ecotoxicol. Environ. Saf. ., 148 (2018) 620-631.
DOI: 10.1016/j.ecoenv.2017.11.008
Google Scholar
[41]
M.W. Kee, Enhanced photodegradation of dye mixtures (methyl orange and methyl green) and real textile wastewater by ZnO micro/nanoflowers, UTAR, (2017).
Google Scholar
[42]
I.G. Morozov, O. Belousova, D. Ortega, M.-K. Mafina, M. Kuznetcov, Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles, J. Alloys Compd., 633 (2015) 237-245.
DOI: 10.1016/j.jallcom.2015.01.285
Google Scholar
[43]
A. Saáedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions, Physica E Low Dimens. Syst. Nanostruct.., 79 (2016) 113-118.
DOI: 10.1016/j.physe.2015.12.002
Google Scholar
[44]
I.A. Radini, N. Hasan, M.A. Malik, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications, J. Photochem. Photobiol., 183 (2018) 154-163.
DOI: 10.1016/j.jphotobiol.2018.04.014
Google Scholar
[45]
A.M. Mahar, A. Balouch, F.N. Talpur, P. Panah, R. Kumar, A. Kumar, A.H. Pato, D. Mal, S. Kumar, A.A. Umar, Fabrication of Pt-Pd@ ITO grown heterogeneous nanocatalysts as efficient remediator for toxic methyl parathion in aqueous media, Environ. Sci. Pollut. Res. ., 27 (2020) 9970-9978.
DOI: 10.1007/s11356-019-07548-y
Google Scholar
[46]
A.H. Pato, A. Balouch, F.N. Talpur, P. Panah, A.M. Mahar, M.S. Jagirani, S. Kumar, S. Sanam, Fabrication of TiO 2@ ITO-grown nanocatalysts as efficient applicant for catalytic reduction of Eosin Y from aqueous media, Environ. Sci. Pollut. Res. ., 28 (2021) 947-959.
DOI: 10.1007/s11356-020-10548-y
Google Scholar
[47]
Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang, D.D. Dionysiou, Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW), J. Hazard. Mater., 209 (2012) 271-277.
DOI: 10.1016/j.jhazmat.2012.01.021
Google Scholar
[48]
P. Veerakumar, S.-M. Chen, R. Madhu, V. Veeramani, C.-T. Hung, S.-B. Liu, Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg (II) ions, ACS Appl. Mater. Interfaces, 7 (2015) 24810-24821.
DOI: 10.1021/acsami.5b07900
Google Scholar