A Comprehensive Study of Bending and Stability Responses of 2D-FG Nanobeams Using a Microstructure-Surface Energy-Based Model under Various Boundary Conditions

Article Preview

Abstract:

The size-dependent bending and static stability characteristics of nanobeams made of bi-directional functionally graded materials (2D-FGMs) under different boundary conditions are comprehensively investigated. Based on the modified couple stress theory and surface elasticity theory, the size-dependent model is formulated for 2D-FG Euler-Bernoulli beam. The material properties of the beam smoothly change along both the axial and thickness directions according to power-law distribution. The continuous spatial variations of the single material length scale parameter and the three surface constants are incorporated to describe the effects of microstructure and surface energy, respectively. This model accounts for the axial and transverse displacements, the exact position of the physical neutral plane, and Poisson’s effect. To obtain the static response of the present model, Ritz method is employed by approximating the axial and transverse displacements in terms of polynomial forms. Different boundary conditions, i.e., Simply-simply (S-S), Clamped-clamped (C-C), Clamped-simply (C-S), and Clamped-free (C-F), are considered and satisfied by adding auxiliary functions to the displacement functions. Numerical results with various cases of boundary conditions are performed with an insight to explore the effects of gradient indices in thickness and length directions, surface energy, material length scale parameter, slenderness ratio, and thickness on the static deflection and buckling responses of 2D-FG nanobeams. Results disclose that, the material properties, the surface energy, and microstructure effects have a significant effect on the bending, and buckling responses of 2D-FG nanobeams. Hence, this study can be helpful in the design and optimization of 2D-FG nanobeams in bending and buckling responses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-120

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.S. Ghatage, V.R. Kar, P.E. Sudhagar, On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review, Composite Structures 236 (2020) 111837.

DOI: 10.1016/j.compstruct.2019.111837

Google Scholar

[2] L. Yan, Y. Chen, F. Liou, Additive manufacturing of functionally graded metallic materials using laser metal deposition, Additive Manufacturing 31 (2020) 100901.

DOI: 10.1016/j.addma.2019.100901

Google Scholar

[3] H.H. Gorgani, M.M. Adeli, M. Hosseini, Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, Microsystem Technologies, 25(8) (2019) 3165-3173.

DOI: 10.1007/s00542-018-4216-4

Google Scholar

[4] A. Farajpour, M.H. Ghayesh, H. Farokhi, A review on the mechanics of nanostructures, International Journal of Engineering Science 133 (2018) 231-263.

DOI: 10.1016/j.ijengsci.2018.09.006

Google Scholar

[5] H.T. Thai, T.P. Vo, T.K. Nguyen, S.E. Kim, A review of continuum mechanics models for size-dependent analysis of beams and plates, Composite Structures 177 (2017) 196-219.

DOI: 10.1016/j.compstruct.2017.06.040

Google Scholar

[6] V.S. Chandel, G. Wang, M. Talha, Advances in modelling and analysis of nano structures: a review, Nanotechnology Reviews 9 (2020) 230-258.

DOI: 10.1515/ntrev-2020-0020

Google Scholar

[7] R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and analysis 11 (1962) 415-448.

DOI: 10.1007/bf00253946

Google Scholar

[8] F. Yang, A. Chong, D.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39 (2002) 2731-2743.

DOI: 10.1016/s0020-7683(02)00152-x

Google Scholar

[9] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57 (1975) 291-323.

DOI: 10.1007/bf00261375

Google Scholar

[10] M.E. Gurtin, A.I. Murdoch, Surface stress in solids, International Journal of Solids and Structures 14 (1978) 431-440.

DOI: 10.1016/0020-7683(78)90008-2

Google Scholar

[11] M.H. Ghayesh, A. Farajpour, A review on the mechanics of functionally graded nanoscale and microscale structures, International Journal of Engineering Science 137 (2019) 8-36.

DOI: 10.1016/j.ijengsci.2018.12.001

Google Scholar

[12] M.A. Steinberg, Materials for aerospace, Scientific American 255 (1986) 66-73.

Google Scholar

[13] M. Nemat-Alla, Reduction of thermal stresses by developing two-dimensional functionally graded materials, International Journal of Solids and Structures 40 (2003) 7339-7356.

DOI: 10.1016/j.ijsolstr.2003.08.017

Google Scholar

[14] C. Lü, W. Chen, R. Xu, C.W. Lim, Semi-analytical elasticity solutions for bi-directional functionally graded beams, International Journal of Solids and Structures 45 (2008) 258-275.

DOI: 10.1016/j.ijsolstr.2007.07.018

Google Scholar

[15] L. Zhao, W. Chen, C. Lü, Symplectic elasticity for bi-directional functionally graded materials, Mechanics of Materials 54 (2012) 32-42.

DOI: 10.1016/j.mechmat.2012.06.001

Google Scholar

[16] M. Şimşek, Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions, Composite Structures 133 (2015) 968-978.

DOI: 10.1016/j.compstruct.2015.08.021

Google Scholar

[17] M. Şimşek, Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions, Composite Structures 149 (2016) 304-314.

DOI: 10.1016/j.compstruct.2016.04.034

Google Scholar

[18] Z.h. Wang, X.h. Wang, G.d. Xu, S. Cheng, T. Zeng, Free vibration of two-directional functionally graded beams, Composite structures 135 (2016) 191-198.

DOI: 10.1016/j.compstruct.2015.09.013

Google Scholar

[19] A. Pydah, A. Sabale, Static analysis of bi-directional functionally graded curved beams, Composite structures 160 (2017) 867-876.

DOI: 10.1016/j.compstruct.2016.10.120

Google Scholar

[20] A. Karamanlı, Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory, Composite Structures 174 (2017) 70-86.

DOI: 10.1016/j.compstruct.2017.04.046

Google Scholar

[21] A. Karamanlı, Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory, Composite Structures 189 (2018) 127-136.

DOI: 10.1016/j.compstruct.2018.01.060

Google Scholar

[22] D.K. Nguyen, Q.H. Nguyen, T.T. Tran, Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load, Acta Mechanica 228 (2017) 141-155.

DOI: 10.1007/s00707-016-1705-3

Google Scholar

[23] S. Rajasekaran, H.B. Khaniki, Free vibration analysis of bi-directional functionally graded single/multi-cracked beams, International Journal of Mechanical Sciences 144 (2018) 341-356.

DOI: 10.1016/j.ijmecsci.2018.06.004

Google Scholar

[24] J. Li, Y. Guan, G. Wang, G. Zhao, J. Lin, H. Naceur, D. Coutellier, Meshless modeling of bending behavior of bi-directional functionally graded beam structures, Composites Part B: Engineering 155 (2018) 104-111.

DOI: 10.1016/j.compositesb.2018.08.029

Google Scholar

[25] J. Li, F. Tang, M. Habibi, Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure, Engineering with Computers )2020( https://doi.org/10.1007/s00366-020-01110-y.

DOI: 10.1007/s00366-020-01110-y

Google Scholar

[26] Y. Tang, Q. Ding, Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads, Composite Structures 225 (2019) 111076.

DOI: 10.1016/j.compstruct.2019.111076

Google Scholar

[27] Y. Tang, X. Lv, T. Yang, Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration, Composites Part B: Engineering 156 (2019) 319-331.

DOI: 10.1016/j.compositesb.2018.08.140

Google Scholar

[28] J. Lei, Y. He, Z. Li, S. Guo, D. Liu, Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory, Composite Structures 209 (2019) 811-829.

DOI: 10.1016/j.compstruct.2018.10.106

Google Scholar

[29] Y. Lu, X. Chen, Nonlinear Parametric Dynamics of Bidirectional Functionally Graded Beams, Shock and Vibration 2020 (2020) 8840833.

DOI: 10.1155/2020/8840833

Google Scholar

[30] Y. Huang, Z.Y. Ouyang, Exact solution for bending analysis of two-directional functionally graded Timoshenko beams, Archive of Applied Mechanics 90 (2020) 1005–1023.

DOI: 10.1007/s00419-019-01655-5

Google Scholar

[31] K. Rao, A. Swain, T. Roy, Dynamic responses of bidirectional functionally graded rotor shaft, Mechanics Based Design of Structures and Machines (2020) 1-29.

DOI: 10.1080/15397734.2020.1713804

Google Scholar

[32] P.M. Ramteke, B.P. Mahapatra, S.K. Panda, N. Sharma, Static deflection simulation study of 2D Functionally graded porous structure, Materials Today: Proceedings 33(8) (2020) 5544-5547.

DOI: 10.1016/j.matpr.2020.03.537

Google Scholar

[33] H. Wu, H. Liu, Nonlinear thermo-mechanical response of temperature-dependent FG sandwich nanobeams with geometric imperfection, Engineering with Computers (2020) https://doi.org/10.1007/s00366-020-01005-y.

DOI: 10.1007/s00366-020-01005-y

Google Scholar

[34] H.B. Khaniki, M.H. Ghayesh, S. Hussain, M. Amabili, Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions, Engineering with Computers (2020) https://doi.org/10.1007/s00366-020-01208-3.

DOI: 10.1007/s00366-020-01208-3

Google Scholar

[35] M. Belarbi, A. Daikh, A. Garg, T. Merzouki, H. Chalak, H. Hirane, Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory, Composite Structure 264 (2021) 113712.

DOI: 10.1016/j.compstruct.2021.113712

Google Scholar

[36] M.Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science 105 (2016) 1-11.

DOI: 10.1016/j.ijengsci.2016.04.011

Google Scholar

[37] M.Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science 103 (2016) 1-10.

DOI: 10.1016/j.ijengsci.2016.03.001

Google Scholar

[38] N. Shafiei, M. Kazemi, Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams, Aerospace Science and Technology 66 (2017) 1-11.

DOI: 10.1016/j.ast.2017.02.019

Google Scholar

[39] H. Matouk, A. Bousahla, H. Heireche, F. Bourada, E. Bedia, A. Tounsi, S. Mahmoud, A. Tounsi, K. Benrahou, Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory, Advances in nano research 8(4) (2020) 293-305.

DOI: 10.1007/s11242-021-01666-3

Google Scholar

[40] A. Rouabhia, A. Chikh, A.A. Bousahla, F. Bourada, H. Heireche, A. Tounsi, B. Kouider Halim, A. Tounsi, M. Al-Zahrani, Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory, Steel and Composite Structures 37(6) (2020) 695-709.

Google Scholar

[41] A. Zenkour, A. Radwan, A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory, Eur. Phys. J. Plus 136 (2021) 248.

DOI: 10.1140/epjp/s13360-021-01238-w

Google Scholar

[42] Y. Kumar, A. Gupta, A. Tounsi, Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model, Advances in nano research, 11(1) (2021) 1-17.

Google Scholar

[43] S.K. Jena, S. Chakraverty, M. Malikan, Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach, Eur. Phys. J. Plus 135 (2020) 164.

DOI: 10.1140/epjp/s13360-020-00176-3

Google Scholar

[44] Y. Huang, B. Karami, D. Shahsavari, A. Tounsi, Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels, Archives of Civil and Mechanical Engineering, 21(4) (2021) 1-15.

DOI: 10.1007/s43452-021-00291-7

Google Scholar

[45] S.S. Mirjavadi, B.M. Afshari, N. Shafiei, A. Hamouda, M. Kazemi, Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams, Steel Compos. Struct 25 (2017) 415-426.

DOI: 10.1016/j.cma.2017.05.007

Google Scholar

[46] T. Yang, Y. Tang, Q. Li, X.D. Yang, Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams, Composite Structures 204 (2018) 313-319.

DOI: 10.1016/j.compstruct.2018.07.045

Google Scholar

[47] S. Ebrahimi-Nejad, G.R. Shaghaghi, F. Miraskari, M. Kheybari, Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermo-mechanical loading, Eur. Phys. J. Plus 134 (2019) 465.

DOI: 10.1140/epjp/i2019-12795-6

Google Scholar

[48] A. Rahmani, S. Faroughi, M. Friswell, The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory, Mechanical Systems and Signal Processing 144 (2020) 106854.

DOI: 10.1016/j.ymssp.2020.106854

Google Scholar

[49] S. Faroughi, A. Rahmani, M. Friswell, On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model, Applied Mathematical Modelling 80 (2020) 169-190.

DOI: 10.1016/j.apm.2019.11.040

Google Scholar

[50] L. Li, X. Li, Y. Hu, Nonlinear bending of a two-dimensionally functionally graded beam, Composite Structures 184 (2018) 1049-1061.

DOI: 10.1016/j.compstruct.2017.10.087

Google Scholar

[51] S. Sahmani, B. Safaei, Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects, Thin-Walled Structures 140 (2019) 342-356.

DOI: 10.1016/j.tws.2019.03.045

Google Scholar

[52] S. Sahmani, B. Safaei, Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation, Thin-Walled Structures 143 (2019) 106226.

DOI: 10.1016/j.tws.2019.106226

Google Scholar

[53] B. Karami, M. Janghorban, T. Rabczuk, Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory, Composites Part B: Engineering 182 (2020) 107622.

DOI: 10.1016/j.compositesb.2019.107622

Google Scholar

[54] P. Van Vinh, A. Tounsi, The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates, Engineering with Computers (2021) 1-19 https://doi.org /10.1007/s00366-021-01475-8.

DOI: 10.1007/s00366-021-01475-8

Google Scholar

[55] F. Heidari, K. Taheri, M. Sheybani, M. Janghorban, A. Tounsi, On the mechanics of nanocomposites reinforced by wavy/defected/aggregated, Steel and Composite Structures, 38(5) (2021) 533-545.

Google Scholar

[56] A. Daikh, M. Houari, M.A. Eltaher, A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates, Composite Structures 262 (2021)113347.

DOI: 10.1016/j.compstruct.2020.113347

Google Scholar

[57] N. Challamel, C. Wang, The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology 19 (2008) 345703.

DOI: 10.1088/0957-4484/19/34/345703

Google Scholar

[58] F.F. Mahmoud, On the nonexistence of a feasible solution in the context of the differential form of Eringen's constitutive model: a proposed iterative model based on a residual nonlocality formulation, International Journal of Applied Mechanics 9 (2017) 1750094.

DOI: 10.1142/s1758825117500946

Google Scholar

[59] G. Romano, R. Barretta, M. Diaco, Iterative methods for nonlocal elasticity problems, Continuum Mechanics and Thermodynamics 31(2019) 669-689.

DOI: 10.1007/s00161-018-0717-8

Google Scholar

[60] A. Karamanlı, T.P. Vo, Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method, Composites Part B: Engineering 144 (2018) 171-183.

DOI: 10.1016/j.compositesb.2018.02.030

Google Scholar

[61] L.C. Trinh, T.P. Vo, H.T. Thai, T.K. Nguyen, Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions, Composites Part B: Engineering 134 (2018) 225-245.

DOI: 10.1016/j.compositesb.2017.09.054

Google Scholar

[62] T. Yu, H. Hu, J. Zhang, T.Q. Bui, Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory, Thin-Walled Structures 138 (2019) 1-14.

DOI: 10.1016/j.tws.2018.12.006

Google Scholar

[63] T. Yu, J. Zhang, H. Hu, T.Q. Bui, A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis, Composite Structures 211 (2019) 76-88.

DOI: 10.1016/j.compstruct.2018.12.014

Google Scholar

[64] S. Rajasekaran, H.B. Khaniki, Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass, Applied Mathematical Modelling 72 (2019) 129-154.

DOI: 10.1016/j.apm.2019.03.021

Google Scholar

[65] X. Chen, Y. Lu, Y. Li, Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium, Applied Mathematical Modelling 67 (2019) 430-448.

DOI: 10.1016/j.apm.2018.11.004

Google Scholar

[66] X. Chen, X. Zhang, Y. Lu, Y. Li, Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams, International Journal of Mechanical Sciences 151 (2019) 424-443.

DOI: 10.1016/j.ijmecsci.2018.12.001

Google Scholar

[67] S.A. Mohamed, L. Gamal, R.A. Shanab, A.E. Bakry, A comparison of FEM and DIQM in investigating the nonlinear free vibration of axially functionally graded tapered microbeams with general boundary conditions, Composite Structures 282 (2021) 115027.

DOI: 10.1016/j.compstruct.2021.115027

Google Scholar

[68] B. Gheshlaghi, S.M. Hasheminejad, Surface effects on nonlinear free vibration of nanobeams, Composites Part B: Engineering 42 (2011) 934-937.

DOI: 10.1016/j.compositesb.2010.12.026

Google Scholar

[69] P.A. Sharabiani, M.R. Yazdi, Nonlinear free vibrations of functionally graded nanobeams with surface effects, Composites Part B: Engineering 45 (2013) 581-586.

DOI: 10.1016/j.compositesb.2012.04.064

Google Scholar

[70] S. Hosseini-Hashemi, R. Nazemnezhad, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects, Composites Part B: Engineering 52 (2013) 199-206.

DOI: 10.1016/j.compositesb.2013.04.023

Google Scholar

[71] S. Sahmani, M. Aghdam, M. Bahrami, On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Composite Structures 121)2015( 377-385.

DOI: 10.1016/j.compstruct.2014.11.033

Google Scholar

[72] K. Kiani, Thermo-elasto-dynamic analysis of axially functionally graded non-uniform nanobeams with surface energy, International Journal of Engineering Science 106 (2016) 57-76.

DOI: 10.1016/j.ijengsci.2016.05.004

Google Scholar

[73] R. Ansari, V. Mohammadi, M.F. Shojaei, R. Gholami, S. Sahmani, On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory, Composites Part B: Engineering 60 (2014) 158-166.

DOI: 10.1016/j.compositesb.2013.12.066

Google Scholar

[74] R. Ansari, T. Pourashraf, R. Gholami, An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory, Thin-Walled Structures 93 (2015) 169-176.

DOI: 10.1016/j.tws.2015.03.013

Google Scholar

[75] R. Ansari, R. Gholami, Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory, Composites Part B: Engineering 95 (2016) 301-316.

DOI: 10.1016/j.compositesb.2016.04.002

Google Scholar

[76] S. Saffari, M. Hashemian, D. Toghraie, Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects, Physica B: Condensed Matter 520 (2017) 97-105.

DOI: 10.1016/j.physb.2017.06.029

Google Scholar

[77] S. Esfahani, S.E. Khadem, A.E. Mamaghani, Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory, International Journal of Mechanical Sciences 151 (2019) 508-522.

DOI: 10.1016/j.ijmecsci.2018.11.030

Google Scholar

[78] F. Ebrahimi, S. Hosseini, Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis, Engineering with Computers (2020) https://doi.org/10.1007/s00366-019-00906-x.

DOI: 10.1007/s00366-019-00906-x

Google Scholar

[79] L. Chu, Y. Li, G. Dui, Nonlinear analysis of functionally graded flexoelectric nanoscale energy harvesters, International Journal of Mechanical Sciences 167 (2020) 105282.

DOI: 10.1016/j.ijmecsci.2019.105282

Google Scholar

[80] A. Shariati, S. Hosseini, S. Bayrami, F. Ebrahimi, A. Toghroli, Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of viscoelastic piezoelectric nanoelectromechanical resonators, Engineering with Computers (2020) https://doi.org/10.1007/ s00366-019-00916-9.

DOI: 10.1007/s00366-019-00916-9

Google Scholar

[81] F. Ebrahimi, S. Hosseini, Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: an analytical study, Engineering with Computers (2020) https://doi.org/10.1007/s00366-019-00879-x.

DOI: 10.1007/s00366-019-00879-x

Google Scholar

[82] R. Nazemnezhad, H. Shokrollahi, Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect, Steel and Composite Structures 35 (2020) 449-462.

Google Scholar

[83] B. Xie, S. Sahmani, B. Safaei, B. Xu, Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory, Engineering with Computers (2020) https://doi.org/10.1007/s00366-019-00931-w.

DOI: 10.1007/s00366-019-00931-w

Google Scholar

[84] X.L. Gao, F.F. Mahmoud, A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects, Zeitschrift für angewandte Mathematik und Physik 65 (2014) 393-404.

DOI: 10.1007/s00033-013-0343-z

Google Scholar

[85] X.L. Gao, A new Timoshenko beam model incorporating microstructure and surface energy effects, Acta Mechanica 226 (2015) 457-474.

DOI: 10.1007/s00707-014-1189-y

Google Scholar

[86] X.L. Gao, G. Zhang, A microstructure-and surface energy-dependent third-order shear deformation beam model, Zeitschrift für angewandte Mathematik und Physik 66 (2015) 1871-1894.

DOI: 10.1007/s00033-014-0455-0

Google Scholar

[87] M.A. Attia, R.A. Shanab, Vibration characteristics of two-dimensional FGM nanobeams with couple stress and surface energy under general boundary conditions, Aerospace Science and Technology 111(2021) 106552.

DOI: 10.1016/j.ast.2021.106552

Google Scholar

[88] L. Zhang, B. Wang, S. Zhou, Y. Xue, Modeling the size-dependent nanostructures: incorporating the bulk and surface effects, Journal of Nanomechanics and Micromechanics 7 )2017 (04016012.

DOI: 10.1061/(asce)nm.2153-5477.0000117

Google Scholar

[89] S. Yin, Y. Deng, T. Yu, S. Gu, G. Zhang, Isogeometric analysis for non-classical Bernoulli-Euler beam model incorporating microstructure and surface energy effects, Applied Mathematical Modelling 89 (2021) 470-485.

DOI: 10.1016/j.apm.2020.07.015

Google Scholar

[90] M.A. Attia, On the mechanics of functionally graded nanobeams with the account of surface elasticity, International Journal of Engineering Science 115 (2017) 73-101.

DOI: 10.1016/j.ijengsci.2017.03.011

Google Scholar

[91] M.A. Attia, R.A. Shanab, S.A. Mohamed, N.A. Mohamed, Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory, International Journal of Structural Stability and Dynamics 19 (2019) 1950127.

DOI: 10.1142/s021945541950127x

Google Scholar

[92] R.A. Shanab, M.A. Attia, S.A. Mohamed, Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects, International Journal of Mechanical Sciences 131 (2017) 908-923.

DOI: 10.1016/j.ijmecsci.2017.07.055

Google Scholar

[93] R.A. Shanab, M.A. Attia, S.A. Mohamed, N.A. Mohamed, Effect of Microstructure and Surface Energy on the Static and Dynamic Characteristics of FG Timoshenko Nanobeam Embedded in an Elastic Medium, Journal of Nano Research 61 (2020) 97-117.

DOI: 10.4028/www.scientific.net/jnanor.61.97

Google Scholar

[94] R.A. Shanab, S.A. Mohamed, N.A. Mohamed, M.A. Attia, Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories, Acta Mechanica 231 (2020) 1977–(2010).

DOI: 10.1007/s00707-020-02623-9

Google Scholar

[95] R.A. Shanab, M.A. Attia, Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect, Engineering with Computers (2020) https://doi.org/10.1007/s00366-020-01205-6.

DOI: 10.1007/s00366-020-01205-6

Google Scholar

[96] R.M. Abo-Bakr, M.A. Eltaher, M.A. Attia, Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects, Engineering with Computers (2020) https://doi.org/10.1007/s00366-020-01146-0.

DOI: 10.1007/s00366-020-01146-0

Google Scholar

[97] Y. Zhang, H. Shen, Y. Wang, X. Zhang, Combined effects of surface energy and couple stress on the nonlinear bending of FG-CNTR nanobeams, International Journal of Modern Physics B 34(11) (2020) 2050103.

DOI: 10.1142/s0217979220501039

Google Scholar

[98] S. Timoshenko, J. Goodier, Theory of Elasticity, third ed., McGraw-Hill, New York, (1970).

Google Scholar

[99] Y. Kumar, The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review, Journal of Vibration and Control 24(7) (2018) 1205-1227.

DOI: 10.1177/1077546317694724

Google Scholar

[100] J. Reddy, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids 59 (2011) 2382-2399.

DOI: 10.1016/j.jmps.2011.06.008

Google Scholar

[101] A. Arbind, J. Reddy, Nonlinear analysis of functionally graded microstructure-dependent beams, Composite Structures 98 (2013) 272-281.

DOI: 10.1016/j.compstruct.2012.10.003

Google Scholar

[102] M. Hashemian, M. Falsafioon, M. Pirmoradian, D. Toghraie, Nonlocal dynamic stability analysis of a Timoshenko nanobeam subjected to a sequence of moving nanoparticles considering surface effects, Mechanics of Materials 148 (2020) 103452.

DOI: 10.1016/j.mechmat.2020.103452

Google Scholar

[103] M.A. Khorshidi, The material length scale parameter used in couple stress theories is not a material constant, Int. J. Eng. Sci. 133 (2018) 15-25.

DOI: 10.1016/j.ijengsci.2018.08.005

Google Scholar

[104] M.A. Khorshidi, Validation of weakening effect in modified couple stress theory: Dispersion analysis of carbon nanotubes, Int. J. Eng. Sci. 170 (2020) 105358.

DOI: 10.1016/j.ijmecsci.2019.105358

Google Scholar

[105] R. Maranganti, P. Sharma, A novel atomistic approach to determine strain gradient elasticity constants, J Mech Phys Solids 55 (2007) 1832–52.

Google Scholar

[106] D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J Mech Phys Solids 51(8) (2003) 1477–508.

DOI: 10.1016/s0022-5096(03)00053-x

Google Scholar

[107] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J Mech Phys Solids 46(3) (1998) 411–25.

DOI: 10.1016/s0022-5096(97)00086-0

Google Scholar

[108] A.C. Chong, F. Yang, D.C. Lam, P. Tong, Torsion and bending of micron-scaled structures, J. Mater. Res. 16 (2001) 1052–1058.

DOI: 10.1557/jmr.2001.0146

Google Scholar

[109] S.K. Park, X.L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Micromech Microeng 16(11) (2006) 2355.

DOI: 10.1088/0960-1317/16/11/015

Google Scholar

[110] J. Lei, Y. He, S. Guo, Z. Li, D. Liu, Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity, AIP Adv 6(10) (2016) 105202.

DOI: 10.1063/1.4964660

Google Scholar

[111] Z. Li, Y. He, J. Lei, S. Guo, D. Liu, L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory, Int. J. Mech. Sci. 141 (2018) 198–205.

DOI: 10.1016/j.ijmecsci.2018.03.035

Google Scholar

[112] K. Al-Basyouni, A. Tounsi, S. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position, Composite Structures 125 (2015) 621-630.

DOI: 10.1016/j.compstruct.2014.12.070

Google Scholar