Structure and Electrochemical Properties of Laser-Modified NiWO4

Article Preview

Abstract:

In recent years, nickel tungstate has attracted considerable research interest as an electrode material for supercapacitors. In this work, NiWO4 was synthesized by co-precipitation and exposed to laser irradiation. The structure of nickel tungstate was investigated by X-ray diffraction and its electrochemical properties by potentiodynamics, galvanostatic and impedance spectroscopy methods. The results show that NiWO4 subjected to laser irradiation for 180 s showed higher specific characteristics than the initial material. Namely, at a discharge current of 1 mA, NiWO4 achieves a specific capacitance of 153 F/g, and this value is 48% higher than that of the initial material. The higher specific characteristics of laser-modified NiWO4 result from the ability of the material to interact better with electrolyte ions due to the passage of fast redox reactions and the capacitance of the electrical double layer, which is confirmed by impedance studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-57

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Naska, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas & A. Banerjee, Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. Journal of Materials Chemistry. 9(2021) 1970-2017.

DOI: 10.1039/d0ta09655e

Google Scholar

[2] Y. Ma, X. Xie, W. Yang, Z. Yu, X. Sun, Y. Zhang, X. Yang, H. Kimura, C. Hou, Z.Guo & Du. W, Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Advanced Composites and Hybrid Materials. (2021) 1-19.

DOI: 10.1007/s42114-021-00358-2

Google Scholar

[3] I.M. Budzulyak, O.M. Khemii, O.V. Morushko, D.I. Popovych, Yu. Starchuk, L.S. Yablon, Electrochemical Properties of β-Hydroxide Nickel/Carbon. Nanosistemi, Nanomateriali, Nanotehnologii. 17 (2019) 689–700.

DOI: 10.15407/nnn.17.04.689

Google Scholar

[4] R. Bharati, R.A. Singh, B.M. Wanklyn, Electrical conductivity, thermoelectric power and dielectric constant of NiWO4. J. Mater. Sci. 15(1980) 1293−1296.

DOI: 10.1007/bf00551819

Google Scholar

[5] X. Zhang, Z. Li, Z. Yu, L. Wei & X. Guo, Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: enhanced interfacial conductivity and capacitive storage. Applied Surface Science. 505(2020) 144513.

DOI: 10.1016/j.apsusc.2019.144513

Google Scholar

[6] S.M. El-Sheikh & M.M. Rashad, Novel synthesis of cobalt nickel tungstate nanopowders and its photocatalytic application. Journal of Cluster Science. 26(2015) 743-757.

DOI: 10.1007/s10876-014-0735-z

Google Scholar

[7] P.S. Pandey, N.S. Bhave, R.B. Kharat, Structural, optical, electrical and photovoltaic electrochemical characterization of NiWO4 thin films. Electrochim Acta. 51 (2006) 4659–4664.

DOI: 10.1016/j.electacta.2005.12.042

Google Scholar

[8] R.D. Kumar, Y. Andou, S. Karuppuchamy, Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J. Alloys. Compd. 654 (2016) 349–356.

DOI: 10.1016/j.jallcom.2015.09.106

Google Scholar

[9] Y. Huang, Y. Gao, C. Liu, Z. Cao, Y. Wang, Z. Li, & G. Cao, Amorphous NiWO4 nanospheres with high-conductivity and-capacitive performance for supercapacitors. The Journal of Physical Chemistry C. 123(2019) 30067-30076.

DOI: 10.1021/acs.jpcc.9b08448

Google Scholar

[10] L. Niu, Z. Li, Y. Xu, J. Sun, W. Hong, X. Liu, J. Wang & S. Yang, Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS applied materials & interfaces. 5(2013) 8044-8052.

DOI: 10.1021/am402127u

Google Scholar

[11] B.I. Rachiy, B.K. Ostafiychuk, I.M. Budzulyak, R.P. Lisovsky, V.I. Mandzyuk, The effect of thermochemical treatment of carbon materials on their electrochemical properties. Journal of Nano- and Electronic Physics. 6 (2014) 04031.

DOI: 10.1515/nano.11671_2015.115

Google Scholar

[12] B.K. Ostafiychuk, R.P. Lisovskiy, A.-S.A.H. Zamil, R.I. Merena, A.B. Hrubiak, Effect of orthophosphoric acid on morphology of nanoporous carbon materials. Journal of Nano- and Electronic Physics. 11 (2019) 03036.

Google Scholar

[13] H. Farsi, S.A Hosseini, The electrochemical behaviors of methylene blue on the surface of nanostructured NiWO4 prepared by coprecipitation method. J Solid State Electrochem. 17(2013) 2079–(2086).

DOI: 10.1007/s10008-013-2068-5

Google Scholar

[14] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas & S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light: Science & Applications. 5 (2006) e16133-e16133.

DOI: 10.1038/lsa.2016.133

Google Scholar

[15] L.S. Yablon, О.M. Khemiy, І.М. Budzulyak, B.K. Ostafiychuk, O.V. Morushko, Effect of laser irradiation on Electrochemical Properties of composite MoS2/C. Physics and Chemistry of Solid State. 17(2016) 575-581.

DOI: 10.15330/pcss.17.4.575-581

Google Scholar

[16] B.I. Rachiy, Yu.Yu. Starchuk, P.I. Kolkovskyy, I.M. Budzulyak, L.S. Yablon, V.O. Kotsyubynsky, O.V. Morushko, O.M. Khemiy, Accumulation of Charge Mechanisms in Electrochemical Systems Based on Carbon and Nickel Tungstate. Surface Engineering and Applied Electrochemistry. 56 (2020) 697-703.

DOI: 10.3103/s1068375520060149

Google Scholar

[17] P. Sharma, M. Minakshi, J. Whale, A. Jean-Fulcrand, & G. Garnweitner, Effect of the anionic counterpart: Molybdate vs. tungstate in energy storage for pseudo-capacitor applications. Nanomaterials. 11 (2021) 580.

DOI: 10.3390/nano11030580

Google Scholar

[18] M. Li, S. Xu, Y. Zhu, P. Yang, L. Wang & P.K. Chu, Heterostructured Ni (OH) 2–Co (OH) 2 composites on 3D ordered Ni–Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of alloys and compounds. 589 (2014) 364-371.

DOI: 10.1016/j.jallcom.2013.11.230

Google Scholar