Surface Covering of Antimony-Doped Tin Oxide on Titanium Dioxide and Resistivity Analysis

Article Preview

Abstract:

Functional nanocomposites have been widely studied in recent years. Because of its non-toxic and inexpensive properties, titanium dioxide has pervasive application value in the chemical industry. Nano-sized antimony-doped tin oxide (ATO) metallic oxide was developed and combined with a pure titanium dioxide substrate by the effective co-precipitation method. The obtained powder had good conductibility, and its carriers were supplied by the infiltrated Sb atoms in tin oxide crystal. In the present work, the calcination temperatures and molar ratio of tin (IV) chloride pentahydrate (SnCl4·5H2O) and antimony (III) chloride (SbCl3) were optimized for achieving excellent electrical performances. As a result, the sheet resistivity of Sb-SnO2/TiO2 was in the range from 9 kΩ·cm to 15 kΩ·cm. By mixing method, the resistance of Sb-SnO2/TiO2/PDMS could be as low as 2 MΩ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-29

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides, Nature communications, 4 (2013) 2292.

DOI: 10.1038/ncomms3292

Google Scholar

[2] S.K. Bhattacharya, A.C.D. Chaklader, Review on Metal-Filled Plastics. Part1. Electrical Conductivity, Journal of Macromolecular Science: Part D - Reviews in Polymer Processing, 19 (1982) 21-51.

DOI: 10.1080/03602558208067726

Google Scholar

[3] L. Dimesso, Pechini processes: an alternate approach of the sol-gel method, preparation, properties, and applications, Handbook of Sol-Gel Science and Technology, 2 (2016) 1-22.

DOI: 10.1007/978-3-319-19454-7_123-1

Google Scholar

[4] W.T. Liang, D. Li, X.W. Ma, W.J. Dong, J. Li, R.F. Wu, C. Dong, Q.C. Dong, Surface β-Cyclodextrin polymer coated Fe3O4 magnetic nanoparticles: synthesis, characterization and application on efficient adsorption of malachite green, Journal of Nano Research, 54 (2018) 54–65.

DOI: 10.4028/www.scientific.net/jnanor.54.54

Google Scholar

[5] S. Das, V.C. Srivastava, Hierarchical nanostructured ZnO-CuO nanocomposite and its photocatalytic activity, Journal of Nano Research, 35 (2016) 21–26.

DOI: 10.4028/www.scientific.net/jnanor.35.21

Google Scholar

[6] J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles, Inorganic Chemistry Communications, 7 (2004) 91–93.

DOI: 10.1016/j.inoche.2003.10.012

Google Scholar

[7] Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method, Journal of Alloys and Compounds, 634 (2015) 37–42.

DOI: 10.1016/j.jallcom.2015.02.060

Google Scholar

[8] P. Hu, H. Yang, Sb-SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation, Physics and Chemistry of Minerals, 39 (2012) 339–349.

DOI: 10.1007/s00269-012-0492-1

Google Scholar

[9] M.O. Besenhard, A.P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M.M. Cruz, N.T.K. Thanh, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, Chemical Engineering Journal, 399 (2020) 125740.

DOI: 10.1016/j.cej.2020.125740

Google Scholar

[10] N. Fukuda, Y. Watanabe, S. Uemura, Y. Yoshida, T. Nakamura, H. Ushijima, In-Ga-Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a co-precipitation-based method, Journal of Materials Chemistry C, 2 (2014) 2448–2454.

DOI: 10.1039/c3tc31944j

Google Scholar

[11] J. Tan, L. Shen, F.U. Xiansong, W. Hou, X. Chen, Study on preparation of nanometer-sized xSb2O3·(1−x)SnO2 conductive pigment by wet method and its conductive mechanics, Journal of the Chinese Ceramic Society, 31.9 (2003) 892–895.

DOI: 10.1016/j.dyepig.2003.08.005

Google Scholar

[12] V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova-Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure, Chemistry of Materials, 21 (2009) 5229–5236.

DOI: 10.1021/cm902189r

Google Scholar

[13] K. Hou, X. Wen, P. Yan, A. Tang, H. Yang, Tin oxide-carbon-coated sepiolite nanofibers with enhanced lithium-ion storage property, Nanoscale research letters, 12 (2017) 1–10.

DOI: 10.1186/s11671-017-1979-y

Google Scholar

[14] J. Tang, Z. Liu, C. Zhang, X. Meng, S. Li, Y. Pan, X. Wu, Z. Yan, X. Hao, H. Zhuang, Synthesis and characterisation properties of the Sb-SnO2-SiO2 composite powder with the correlation analysis of resistivity and dispersion, Micro & Nano Letters, 14 (2019) 1253–1257.

DOI: 10.1049/mnl.2019.0128

Google Scholar

[15] X. Li, J. Qian, K. Tang, J. Xu, Controllable synthesis of TiO2/ATO conductive composite: effects of TiO2 surface properties, Micro & Nano Letters, 13 (2018) 807–810.

DOI: 10.1049/mnl.2018.0020

Google Scholar

[16] X. Li, J. Qian, J. Xu, Y. Sun, L. Liu, Synthesis and electrical properties of antimony-doped tin oxide-coated TiO2 by polymeric precursor method, Materials Science in Semiconductor Processing, 98 (2019) 70–76.

DOI: 10.1016/j.mssp.2019.03.024

Google Scholar

[17] L. Wang, Q. Chen, S. Zuo, C. Yao, X. Li, W. Liu, M. Zhou, Synthesis of attapulgite/graphene conductive composite and its application on waterborne coatings, SN Applied Sciences, 1 (2019) 1–9.

DOI: 10.1007/s42452-019-0311-0

Google Scholar

[18] J. Carneiro, V. Teixeira, S. Azevedo, F. Fernandes, J. Neves, Development of photocatalytic ceramic materials through the deposition of TiO2 nanoparticles layers, Journal of Nano Research, 18–19 (2012) 165–176.

DOI: 10.4028/www.scientific.net/jnanor.18-19.165

Google Scholar

[19] Y. Wang, H. Duan, Z. Pei, L. Xu, Hydrothermal synthesis of 3D hierarchically flower-like structure Ti/SnO2-Sb electrode with long service life and high electrocatalytic performance, Journal of Electroanalytical Chemistry, 855 (2019) 113635.

DOI: 10.1016/j.jelechem.2019.113635

Google Scholar

[20] L. Xu, Y. Lian, A Ti/SnO2-Sb nanorods anode for electrochemical degradation of CI Acid Red 73, Journal of The Electrochemical Society, 163 (2016) H1144.

DOI: 10.1149/2.0661614jes

Google Scholar

[21] J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes, Energy Storage Materials, 9 (2017) 85–95.

DOI: 10.1016/j.ensm.2017.06.006

Google Scholar

[22] Y. Guo, T. Duan, Y. Chen, Q. Wen, Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays, Ceramics International, 41 (2015) 8723–8729.

DOI: 10.1016/j.ceramint.2015.03.092

Google Scholar

[23] X. Li, J. Qian, J. Li, J. Xu, J. Xing, L. Liu, A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties, Journal of Materials Science: Materials in Electronics, 30 (2019) 9289–9302.

DOI: 10.1007/s10854-019-01259-3

Google Scholar

[24] X. Li, J. Qian, J. Li, K. Tang, Antimony-doped SnO2 nanoparticles-decorated TiO2 composite with enhanced electrical properties, Functional Materials Letters, 13 (2020) 1951005.

DOI: 10.1142/s1793604719510056

Google Scholar

[25] P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb-SnO2/kaolinites nanoparticles, Applied clay science, 55 (2012) 151–157.

DOI: 10.1016/j.clay.2011.11.008

Google Scholar

[26] L. Huang, D. Li, J. Liu, L. Yang, C. Dai, N. Ren, Y. Feng, Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation, Journal of hazardous materials, 393 (2020) 122329.

DOI: 10.1016/j.jhazmat.2020.122329

Google Scholar

[27] Z. Chen, M. Gu, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhang, M. Yang, Conductive TiO2 nanorods via surface coating by antimony doped tin dioxide, Materials Chemistry and Physics, 225 (2019) 181–186.

DOI: 10.1016/j.matchemphys.2018.12.065

Google Scholar

[28] Y. Wang, J. Qian, J. Xing, J. Xu, X. Wang, X. Yu, L. Liu, Preparation of TiO2/Sb-SnO2 composite by a polymer pyrolysis method for conducting fillers, Materials Science in Semiconductor Processing, 133 (2021) 105922.

DOI: 10.1016/j.mssp.2021.105922

Google Scholar

[29] C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties, Inorganic Chemistry, 48 (2009) 7261–7268.

DOI: 10.1021/ic9005983

Google Scholar

[30] H.-J. Jeon, M.-K. Jeon, M. Kang, S.-G. Lee, Y.-L. Lee, Y.-K. Hong, B.-H. Choi, Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities, Materials Letters, 59 (2005) 1801–1810.

DOI: 10.1016/j.matlet.2005.01.070

Google Scholar

[31] P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch. Chemische Technologie in Einzeldarstellungen. Springer., Berlin, Heidelberg, 1912, p.387–409.

DOI: 10.1007/978-3-662-33915-2_7

Google Scholar

[32] K.H. Kim, S.W. Lee, D.W. Shin, C.G. Park, Effect of antimony addition on electrical and optical properties of tin oxide film, Journal of the American Ceramic Society, 77.4 (1994) 915–921.

DOI: 10.1111/j.1151-2916.1994.tb07247.x

Google Scholar

[33] M.F. Abdelmessih, M.A. Ahmed, A.S. Elsayed, Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2-TiO2 nano mixed oxides prepared by sol-gel method, Journal of Photochemistry and Photobiology A-chemistry, 260 (2013) 1–8.

DOI: 10.1016/j.jphotochem.2013.03.011

Google Scholar

[34] P. Kongsong, L. Sikong, S. Niyomwas, V. Rachpech, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2, The Scientific World Journal, 2014 (2014) 869706.

DOI: 10.1155/2014/869706

Google Scholar

[35] Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Core-shell VO2@ TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings, Scientific reports, 3.1 (2013) 1–13.

DOI: 10.1038/srep01370

Google Scholar

[36] Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method, Journal of Materials Science: Materials in Electronics, 25 (2014) 4524–4530.

DOI: 10.1007/s10854-014-2199-1

Google Scholar

[37] V. Senthilkumar, P. Vickraman, R. Ravikumar, Synthesis of fluorine doped tin oxide nanoparticles by sol-gel technique and their characterization, Journal of Sol-Gel Science and Technology, 53 (2010) 316–321.

DOI: 10.1007/s10971-009-2094-z

Google Scholar

[38] Q. Gao, M. Wang, C. Gao, M. Ge, Light-colored conductive fabric coatings using uniform ATO@ TiO2 whiskers, Journal of Materials Science, 56 (2021) 351–363.

DOI: 10.1007/s10853-020-05245-7

Google Scholar

[39] J.M. Wu, Characterizing and comparing the cathodoluminesence and field emission properties of Sb doped SnO2 and SnO2 nanowires, Thin Solid Films, 517 (2008) 1289–1293.

DOI: 10.1016/j.tsf.2008.05.052

Google Scholar

[40] B. Shen, Y. Wang, L. Lu, H. Yang, pH-dependent doping level and optical performance of antimony-doped tin oxide nanocrystals as nanofillers of spectrally selective coating for energy-efficient windows, Ceramics International, 47 (2021) 20335–20340.

DOI: 10.1016/j.ceramint.2021.04.041

Google Scholar

[41] A. Türkhan, E.D. Kaya, A. Koçyiğit, An innovator support material for tyrosinase immobilization: antimony-doped tin oxide thin films (ATO-TF), Applied biochemistry and biotechnology, 192 (2020) 432–442.

DOI: 10.1007/s12010-020-03337-3

Google Scholar

[42] K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, G.D. Sulka, Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties, Electrochimica Acta, 180 (2015) 801–810.

DOI: 10.1016/j.electacta.2015.09.011

Google Scholar

[43] Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure, Materials Chemistry and Physics, 133 (2012) 907–912.

DOI: 10.1016/j.matchemphys.2012.01.115

Google Scholar

[44] H. Lun, J. Ouyang, A. Tang, H. Yang, Fabrication and conductive performance of antimony-doped tin oxide-coated halloysite nanotubes, Nano, 10 (2015) 1550078.

DOI: 10.1142/s1793292015500782

Google Scholar

[45] J.P. Correa Baena, A.G. Agrios, Transparent Conducting Aerogels of Antimony-Doped Tin Oxide, ACS Applied Materials & Interfaces, 6 (2014) 19127–19134.

DOI: 10.1021/am505115x

Google Scholar