[1]
G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides, Nature communications, 4 (2013) 2292.
DOI: 10.1038/ncomms3292
Google Scholar
[2]
S.K. Bhattacharya, A.C.D. Chaklader, Review on Metal-Filled Plastics. Part1. Electrical Conductivity, Journal of Macromolecular Science: Part D - Reviews in Polymer Processing, 19 (1982) 21-51.
DOI: 10.1080/03602558208067726
Google Scholar
[3]
L. Dimesso, Pechini processes: an alternate approach of the sol-gel method, preparation, properties, and applications, Handbook of Sol-Gel Science and Technology, 2 (2016) 1-22.
DOI: 10.1007/978-3-319-19454-7_123-1
Google Scholar
[4]
W.T. Liang, D. Li, X.W. Ma, W.J. Dong, J. Li, R.F. Wu, C. Dong, Q.C. Dong, Surface β-Cyclodextrin polymer coated Fe3O4 magnetic nanoparticles: synthesis, characterization and application on efficient adsorption of malachite green, Journal of Nano Research, 54 (2018) 54–65.
DOI: 10.4028/www.scientific.net/jnanor.54.54
Google Scholar
[5]
S. Das, V.C. Srivastava, Hierarchical nanostructured ZnO-CuO nanocomposite and its photocatalytic activity, Journal of Nano Research, 35 (2016) 21–26.
DOI: 10.4028/www.scientific.net/jnanor.35.21
Google Scholar
[6]
J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles, Inorganic Chemistry Communications, 7 (2004) 91–93.
DOI: 10.1016/j.inoche.2003.10.012
Google Scholar
[7]
Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method, Journal of Alloys and Compounds, 634 (2015) 37–42.
DOI: 10.1016/j.jallcom.2015.02.060
Google Scholar
[8]
P. Hu, H. Yang, Sb-SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation, Physics and Chemistry of Minerals, 39 (2012) 339–349.
DOI: 10.1007/s00269-012-0492-1
Google Scholar
[9]
M.O. Besenhard, A.P. LaGrow, A. Hodzic, M. Kriechbaum, L. Panariello, G. Bais, K. Loizou, S. Damilos, M.M. Cruz, N.T.K. Thanh, Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry, Chemical Engineering Journal, 399 (2020) 125740.
DOI: 10.1016/j.cej.2020.125740
Google Scholar
[10]
N. Fukuda, Y. Watanabe, S. Uemura, Y. Yoshida, T. Nakamura, H. Ushijima, In-Ga-Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a co-precipitation-based method, Journal of Materials Chemistry C, 2 (2014) 2448–2454.
DOI: 10.1039/c3tc31944j
Google Scholar
[11]
J. Tan, L. Shen, F.U. Xiansong, W. Hou, X. Chen, Study on preparation of nanometer-sized xSb2O3·(1−x)SnO2 conductive pigment by wet method and its conductive mechanics, Journal of the Chinese Ceramic Society, 31.9 (2003) 892–895.
DOI: 10.1016/j.dyepig.2003.08.005
Google Scholar
[12]
V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova-Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure, Chemistry of Materials, 21 (2009) 5229–5236.
DOI: 10.1021/cm902189r
Google Scholar
[13]
K. Hou, X. Wen, P. Yan, A. Tang, H. Yang, Tin oxide-carbon-coated sepiolite nanofibers with enhanced lithium-ion storage property, Nanoscale research letters, 12 (2017) 1–10.
DOI: 10.1186/s11671-017-1979-y
Google Scholar
[14]
J. Tang, Z. Liu, C. Zhang, X. Meng, S. Li, Y. Pan, X. Wu, Z. Yan, X. Hao, H. Zhuang, Synthesis and characterisation properties of the Sb-SnO2-SiO2 composite powder with the correlation analysis of resistivity and dispersion, Micro & Nano Letters, 14 (2019) 1253–1257.
DOI: 10.1049/mnl.2019.0128
Google Scholar
[15]
X. Li, J. Qian, K. Tang, J. Xu, Controllable synthesis of TiO2/ATO conductive composite: effects of TiO2 surface properties, Micro & Nano Letters, 13 (2018) 807–810.
DOI: 10.1049/mnl.2018.0020
Google Scholar
[16]
X. Li, J. Qian, J. Xu, Y. Sun, L. Liu, Synthesis and electrical properties of antimony-doped tin oxide-coated TiO2 by polymeric precursor method, Materials Science in Semiconductor Processing, 98 (2019) 70–76.
DOI: 10.1016/j.mssp.2019.03.024
Google Scholar
[17]
L. Wang, Q. Chen, S. Zuo, C. Yao, X. Li, W. Liu, M. Zhou, Synthesis of attapulgite/graphene conductive composite and its application on waterborne coatings, SN Applied Sciences, 1 (2019) 1–9.
DOI: 10.1007/s42452-019-0311-0
Google Scholar
[18]
J. Carneiro, V. Teixeira, S. Azevedo, F. Fernandes, J. Neves, Development of photocatalytic ceramic materials through the deposition of TiO2 nanoparticles layers, Journal of Nano Research, 18–19 (2012) 165–176.
DOI: 10.4028/www.scientific.net/jnanor.18-19.165
Google Scholar
[19]
Y. Wang, H. Duan, Z. Pei, L. Xu, Hydrothermal synthesis of 3D hierarchically flower-like structure Ti/SnO2-Sb electrode with long service life and high electrocatalytic performance, Journal of Electroanalytical Chemistry, 855 (2019) 113635.
DOI: 10.1016/j.jelechem.2019.113635
Google Scholar
[20]
L. Xu, Y. Lian, A Ti/SnO2-Sb nanorods anode for electrochemical degradation of CI Acid Red 73, Journal of The Electrochemical Society, 163 (2016) H1144.
DOI: 10.1149/2.0661614jes
Google Scholar
[21]
J. Cui, S. Yao, J.-Q. Huang, L. Qin, W.G. Chong, Z. Sadighi, J. Huang, Z. Wang, J.-K. Kim, Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes, Energy Storage Materials, 9 (2017) 85–95.
DOI: 10.1016/j.ensm.2017.06.006
Google Scholar
[22]
Y. Guo, T. Duan, Y. Chen, Q. Wen, Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays, Ceramics International, 41 (2015) 8723–8729.
DOI: 10.1016/j.ceramint.2015.03.092
Google Scholar
[23]
X. Li, J. Qian, J. Li, J. Xu, J. Xing, L. Liu, A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties, Journal of Materials Science: Materials in Electronics, 30 (2019) 9289–9302.
DOI: 10.1007/s10854-019-01259-3
Google Scholar
[24]
X. Li, J. Qian, J. Li, K. Tang, Antimony-doped SnO2 nanoparticles-decorated TiO2 composite with enhanced electrical properties, Functional Materials Letters, 13 (2020) 1951005.
DOI: 10.1142/s1793604719510056
Google Scholar
[25]
P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb-SnO2/kaolinites nanoparticles, Applied clay science, 55 (2012) 151–157.
DOI: 10.1016/j.clay.2011.11.008
Google Scholar
[26]
L. Huang, D. Li, J. Liu, L. Yang, C. Dai, N. Ren, Y. Feng, Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation, Journal of hazardous materials, 393 (2020) 122329.
DOI: 10.1016/j.jhazmat.2020.122329
Google Scholar
[27]
Z. Chen, M. Gu, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhang, M. Yang, Conductive TiO2 nanorods via surface coating by antimony doped tin dioxide, Materials Chemistry and Physics, 225 (2019) 181–186.
DOI: 10.1016/j.matchemphys.2018.12.065
Google Scholar
[28]
Y. Wang, J. Qian, J. Xing, J. Xu, X. Wang, X. Yu, L. Liu, Preparation of TiO2/Sb-SnO2 composite by a polymer pyrolysis method for conducting fillers, Materials Science in Semiconductor Processing, 133 (2021) 105922.
DOI: 10.1016/j.mssp.2021.105922
Google Scholar
[29]
C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties, Inorganic Chemistry, 48 (2009) 7261–7268.
DOI: 10.1021/ic9005983
Google Scholar
[30]
H.-J. Jeon, M.-K. Jeon, M. Kang, S.-G. Lee, Y.-L. Lee, Y.-K. Hong, B.-H. Choi, Synthesis and characterization of antimony-doped tin oxide (ATO) with nanometer-sized particles and their conductivities, Materials Letters, 59 (2005) 1801–1810.
DOI: 10.1016/j.matlet.2005.01.070
Google Scholar
[31]
P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch. Chemische Technologie in Einzeldarstellungen. Springer., Berlin, Heidelberg, 1912, p.387–409.
DOI: 10.1007/978-3-662-33915-2_7
Google Scholar
[32]
K.H. Kim, S.W. Lee, D.W. Shin, C.G. Park, Effect of antimony addition on electrical and optical properties of tin oxide film, Journal of the American Ceramic Society, 77.4 (1994) 915–921.
DOI: 10.1111/j.1151-2916.1994.tb07247.x
Google Scholar
[33]
M.F. Abdelmessih, M.A. Ahmed, A.S. Elsayed, Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2-TiO2 nano mixed oxides prepared by sol-gel method, Journal of Photochemistry and Photobiology A-chemistry, 260 (2013) 1–8.
DOI: 10.1016/j.jphotochem.2013.03.011
Google Scholar
[34]
P. Kongsong, L. Sikong, S. Niyomwas, V. Rachpech, Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2, The Scientific World Journal, 2014 (2014) 869706.
DOI: 10.1155/2014/869706
Google Scholar
[35]
Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Core-shell VO2@ TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings, Scientific reports, 3.1 (2013) 1–13.
DOI: 10.1038/srep01370
Google Scholar
[36]
Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method, Journal of Materials Science: Materials in Electronics, 25 (2014) 4524–4530.
DOI: 10.1007/s10854-014-2199-1
Google Scholar
[37]
V. Senthilkumar, P. Vickraman, R. Ravikumar, Synthesis of fluorine doped tin oxide nanoparticles by sol-gel technique and their characterization, Journal of Sol-Gel Science and Technology, 53 (2010) 316–321.
DOI: 10.1007/s10971-009-2094-z
Google Scholar
[38]
Q. Gao, M. Wang, C. Gao, M. Ge, Light-colored conductive fabric coatings using uniform ATO@ TiO2 whiskers, Journal of Materials Science, 56 (2021) 351–363.
DOI: 10.1007/s10853-020-05245-7
Google Scholar
[39]
J.M. Wu, Characterizing and comparing the cathodoluminesence and field emission properties of Sb doped SnO2 and SnO2 nanowires, Thin Solid Films, 517 (2008) 1289–1293.
DOI: 10.1016/j.tsf.2008.05.052
Google Scholar
[40]
B. Shen, Y. Wang, L. Lu, H. Yang, pH-dependent doping level and optical performance of antimony-doped tin oxide nanocrystals as nanofillers of spectrally selective coating for energy-efficient windows, Ceramics International, 47 (2021) 20335–20340.
DOI: 10.1016/j.ceramint.2021.04.041
Google Scholar
[41]
A. Türkhan, E.D. Kaya, A. Koçyiğit, An innovator support material for tyrosinase immobilization: antimony-doped tin oxide thin films (ATO-TF), Applied biochemistry and biotechnology, 192 (2020) 432–442.
DOI: 10.1007/s12010-020-03337-3
Google Scholar
[42]
K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, G.D. Sulka, Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties, Electrochimica Acta, 180 (2015) 801–810.
DOI: 10.1016/j.electacta.2015.09.011
Google Scholar
[43]
Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure, Materials Chemistry and Physics, 133 (2012) 907–912.
DOI: 10.1016/j.matchemphys.2012.01.115
Google Scholar
[44]
H. Lun, J. Ouyang, A. Tang, H. Yang, Fabrication and conductive performance of antimony-doped tin oxide-coated halloysite nanotubes, Nano, 10 (2015) 1550078.
DOI: 10.1142/s1793292015500782
Google Scholar
[45]
J.P. Correa Baena, A.G. Agrios, Transparent Conducting Aerogels of Antimony-Doped Tin Oxide, ACS Applied Materials & Interfaces, 6 (2014) 19127–19134.
DOI: 10.1021/am505115x
Google Scholar