A Comparison Study of Titanium Dioxide and Zinc Oxide Nanoparticles for Cleaning Archaeological Pottery

Article Preview

Abstract:

Many excavations contain potsherds that have suffered from different aspects of deterioration, including salt crystallization, dirt deposition, and soot. The different stains play an important role in the deterioration of archaeological pottery, such as the disappearance of the original surface and discoloration. The present study aims to evaluate some nanoparticles in an innovative poultice form to be used to clean archaeological pottery. In this study, the nanoparticles (NPs) of titanium dioxide (TiO2) and zinc oxide (ZnO) have been prepared at 5% and in the poultice form to be used for the cleaning process of archaeological potsherds excavated from the excavation site at Abusir. Different analytical techniques, such as transmission electron microscope (TEM), digital microscope, stereomicroscope, scanning electron microscope (SEM-EDX), X-ray diffraction (XRD), and measurement of color change have been used to characterize the studied potsherds and evaluate the cleaning process. The results of the XRD analysis showed the presence of some main minerals, such as albite, quartz, diopside, hematite, spinel and chloride salt (halite). The results of the microscopic investigation used in the evaluation process revealed that using TiO2 NPs poultice perfectly removed soot and dust deposits from the surface, and the cleaned surface became smooth. The results of elemental analysis by (SEM-EDX) showed the effective reduction in the percentage of salts and soot from the treated potsherds by TiO2 NPs poultice to be 3.38% and 6.68%, respectively. The measurement of color change revealed that the treated potsherds by TiO2 NPs poultice gave the highest (ΔE*=9.41), confirming this poultice's effective role in cleaning archaeological potsherds. Based on the results of different analytical techniques used in the evaluation process, the TiO2 NPs poultice is recommended for use in the cleaning process of archaeological pottery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-77

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. El-Gohary, W. El-Ghareb, M. Saad, Damage quantification of archaeological pottery in Sheikh Hamad Athribis, Sohag-Egypt, Ceram. Int. 45 (2019) 17611–17619.

DOI: 10.1016/j.ceramint.2019.05.326

Google Scholar

[2] A. Sáenz-Martínez, M. Pérez-Estébanez, M.S. Andrés, M.A. de Buergo, R. Fort, Efficacy of acid treatments used in archaeological ceramics for the removal of calcareous deposits, Eur. Phys. J. Plus. 136 (2021) 1-16.

DOI: 10.1140/epjp/s13360-021-01784-3

Google Scholar

[3] M.M. Ibrahim, H.M. Mohamed, Analytical methods of archaeological pottery sarcophagus excavated from Saqqara, Egypt, Sci. Cult. 5 (2019) 49.59.

Google Scholar

[4] A.H. Shams, A.S. AlKaradawi, R.A. Eloriby, Chemical characterization and manufacturing technology of some lustre ceramic dishes of the Abbasid period, northern Egypt, Mediterr. Archaeol. Archaeom. 22(2022) 50-66.

Google Scholar

[5] M. Barberio, S. Veltri, A. Imbrogno, F. Stranges, A. Bonanno, P. Antici, TiO2 and SiO2 nanoparticles film for cultural heritage: conservation and consolidation of ceramic artifacts, Surf. Coat. Technol. 271 (2015) 174-180.

DOI: 10.1016/j.surfcoat.2014.12.045

Google Scholar

[6] M. El-Gohary, A. Metawa, Cleaning of architectural bricks using RF plasma Metallic Stains,, Int. J. Conserv. Sci. 7 (2016) 669-682.

Google Scholar

[7] Y. Cao, A. Salvini, M. Camaiti, Current Status and Future Prospects of Applying Bioinspired Superhydrophobic Materials for Conservation of Stone Artworks, Coatings. 10 (2020) 1-23.

DOI: 10.3390/coatings10040353

Google Scholar

[8] W.K. Elghareb, Deterioration diagnosis and treatment of some pottery objects from Tell Atrib, Qalyubia, Egypt, Int. J. Conserv. Sci. 12 (2021) 907-920.

Google Scholar

[9] E. Al‑Emam, A. Motawea, J. Caen, K. Janssens, Complex painted surfaces using a double network gel: empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I—Abydos, Herit. Sci. 9 (2021) 1-10.

DOI: 10.1186/s40494-020-00473-1

Google Scholar

[10] M. Bárta, V. Brůna, L. Bareš, J. Krejčí, V. Dulíková, M. Odler, H. Vymazalová, Map of archaeological features in Abusir, Prague Egyptological Studies (2020) 7-34.

Google Scholar

[11] M.E. David, R. Ion, R.M. Grigorescu, L. Iancu, E.R. Andrei, Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview, Mater. 13 (2020) 1-24.

DOI: 10.3390/ma13092064

Google Scholar

[12] G. Turner-Walker, The nature of cleaning: physical and chemical aspects of removing dirt, stains and corrosion. Conference: International Symposium on Cultural Heritage Conservation. (2012) 1-19.

Google Scholar

[13] O. Abdel-Kareem Textile conservation past, present and future, Adv. Res. Conserv. Sci. 2 (2021) 1-15.

Google Scholar

[14] J.S. Pozo-Antonio, A. Ramil, T. Rivas, A.J. López, M.P. Fiorucci, Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite, Constr. Build. Mater. 112 (2016) 682–690.

DOI: 10.1016/j.conbuildmat.2016.02.195

Google Scholar

[15] R. Abd-Allah, Stabilization and treatment of corroded glass objectsdisplayed in the museum of Jordanian heritage, Mediterr. Archaeol. Archaeom. 7 (2007) 19–28.

Google Scholar

[16] N.M.N. El Hadidi, H. Abdel-Monem, M.F. Mohamed, G.G. Hashem, Retreatment and Conservation of a Wooden Panel Previously Treated With Bees Wax, Adv. Res. Conserv. Sci. 1 (2020) 48-65.

DOI: 10.21608/arcs.2020.33541.1006

Google Scholar

[17] M. Baglioni, Y.J. Benavides, A. Desprat-Drapela, R. Giorgi, Amphiphile-based nanofluids for the removal of styrene/acrylate coatings: cleaning of stucco decoration in the Uaxactun archeological site (Guatemala), J. Cult. Herit. 16 (2015) 862–868.

DOI: 10.1016/j.culher.2015.03.008

Google Scholar

[18] N.A. Bader, A.M. Ashry, The cleaning of the Isis temple's mural paintings in upper Egypt using zinc oxide nanoparticles and non-ionic detergent, Int. J. Conserv. Sci. 7 (2016) 443-458.

Google Scholar

[19] R.A. Eloriby, W.S. Mohamed, A.S. Alkaradawi, Evaluation of the Impact of Silica and Alumina Nanocomposites in Consolidation and Protection of Corroded Glass from Early Islamic Period in Egypt: An Multiscientific Experimental and Analytical Study, Mediterr. Archaeol. Archaeom. 22 (2022) 67-78.

Google Scholar

[20] M. El-Gohary, M. Saad, Using some traditional and nanomaterials in the cleaning of ancient Egyptian pottery artifacts (jar and shallow plate) from Athribis, Archaeol. Anthropol. Sci. 12 (2020) 1-12.

DOI: 10.1007/s12520-020-01235-7

Google Scholar

[21] A. Shakeri, D. Yip, M. Badv, S. M. Imani, M. Sanjari, T.F. Didar, Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO2 Nanoparticles, Materials, 11(2018) 1-16.

DOI: 10.3390/ma11061003

Google Scholar

[22] E. Jeong, H. Woo, Y. Moon, D.Y. Lee, M. Jung, Y.S. Lee, J.S. Bae, Self-Cleaning Polyester Fabric Prepared with TiOF2 and Hexadecyltrimethoxysilane, Polymers. 13(2021) 1-12.

DOI: 10.3390/polym13030387

Google Scholar

[23] L. Graziani, E. Quagliarini, F. Bondioli, M. D'Orazio, Durability of self-cleaning TiO2 coatings on fired clay brick façades: Effects of UV exposure and wet & dry cycles, Build. Environ. 71 (2014) 193-203.

DOI: 10.1016/j.buildenv.2013.10.005

Google Scholar

[24] J.O. Carneiro, V. Teixeira, S. Azevedo, F. Fernandes, J. Neves, Development of photocatalytic ceramic materials through the deposition of TiO2 nanoparticles layers, J. Nano. Res. 18-19 (2012) 165-176.

DOI: 10.4028/www.scientific.net/jnanor.18-19.165

Google Scholar

[25] S.H. Awad, F. Shaker, Development of self-cleaning bricks surfaces by CaCO3 modified nano-TiO2 composite coatings, J. Phys. Conf. Ser. 1973 (2021) 1-9.

DOI: 10.1088/1742-6596/1973/1/012142

Google Scholar

[26] F. Weichelt, R. Emmler, R. Flyunt, E. Beyer, M.R. Buchmeiser, M. Beyer, ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications, Macromol. Mater. Eng. 295 (2010) 130–136.

DOI: 10.1002/mame.200900135

Google Scholar

[27] M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Experimental study for evaluation of Paraloid® B72 and its nanocomposite with nano TiO2 and nano ZnO for consolidation of pottery samples, Sci. Cult. 7 (2021) 101-111.

Google Scholar

[28] D. Harandi, H. Ahmadi, M.M. Achachluei, Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot, Int. Biodeterior. Biodegrad. 108 (2016) 142-148.

DOI: 10.1016/j.ibiod.2015.12.017

Google Scholar

[29] K. Segel, I. Brajer, M. Taube, C.M. de Fonjaudran, M. Baglioni, D. Chelazzi, R. Giorgi, P. Baglioni, Removing Ingrained Soiling from Medieval Lime-based Wall Paintings Using Nanorestore Gel® Peggy 6 in Combination with Aqueous Cleaning Liquids, Stud. Conser. 65 (2020) 1-8.

DOI: 10.1080/00393630.2020.1790890

Google Scholar

[30] H. Moustafa, N.A. Darwish, A.M. Youssef, S. Reda, A.A. El-Wakil, High-Performance of Nanoparticles and Their Effects on the Mechanical, Thermal Stability and UV Shielding Properties of PMMA Nanocomposites. Egypt. J. Chem. 61(2018) 23 - 32.

DOI: 10.21608/ejchem.2017.1932.1159

Google Scholar

[31] E. Nabil, N. Mahmoud, A.M. Youssef, S. Kameld, Influence of Polymers Loaded with ZnO and TiO2 Nanoparticles on Thermal Resistance of Archaeological Wood, Egypt. J. Chem. 63 (2020) 4645 – 4657.

DOI: 10.21608/ejchem.2020.42596.2859

Google Scholar

[32] T.M. Butler, B.D. MacCraith, C. McDonagh, Leaching in sol–gel-derived silica films for optical pH sensing, J. Non-Cryst. Solids. 3(1998) 249–258.

DOI: 10.1016/s0022-3093(97)00481-x

Google Scholar

[33] L.S. Selwyn, V. Argyropoulos, Removal of Chloride and Iron Ions from Archaeological Wrought Iron with Sodium Hydroxide and Ethylenediamine Solutions, Stud. Conser. 50 (2005) 81-100.

DOI: 10.1179/sic.2005.50.2.81

Google Scholar

[34] Á. Sáenz-Martínez, M. San Andrés, M.A. de Buergo, I. Blasco, R. Fort, Removing calcium carbonate deposits from archaeological ceramics. Traditional methods under review, Mediterr. Archaeol. Archaeom. 19 (2019) 107-117.

DOI: 10.1201/9780429345470-52

Google Scholar

[35] M.A. Aldosari, S.S. Darwish, M.A. Adam, N.A. Elmarzugi, S.M. Ahmed, Evaluation of preventive performance of kaolin and calcium hydroxide nanocomposites in strengthening the outdoor carved limestone, Archaeol. Anthropol. Sci. 11 (2019) 3389-3405.

DOI: 10.1007/s12520-018-0741-4

Google Scholar

[36] M.M. Ibrahim, H.M. Mohamed, Analytical Study and Conservation of New Kingdom Period Pottery Jars from Saqqara Excavation, Egypt, Adv. Mat. Res. 1167 (2021) 101-113.

DOI: 10.4028/www.scientific.net/amr.1167.101

Google Scholar

[37] G. Abdel-Maksoud, M. Abdel-Hamied, H.A. El-Shemy, Analytical techniques used for condition assessment of a late period mummy, J. Cult. Herit. 48 (2021) 83–92.

DOI: 10.1016/j.culher.2021.01.001

Google Scholar

[38] S. Omar, Characterization of the Ottoman ceramic tiles in the façade of Mustafa Sinan's Sapil (Cairo, Egypt), Sci. Cult. 8 (2022) 1-15.

Google Scholar

[39] N.S. Abdel Rahim, Analytical study and conservation of archaeological Terra Sigillata ware from roman period, Tripoli, Libya, Sci. Cult. 2 (2016) 19-27.

Google Scholar

[40] D.K. Verma, S. Patel, K.S. Kushwah, Synthesis of Titanium dioxide (TiO2) nanoparticles and impact on morphological changes, seeds yield and phytotoxicity of Phaseolus vulgaris L., Trop. Plant. Res. 7 (2020) 158-170.

DOI: 10.22271/tpr.2020.v7.i1.021

Google Scholar

[41] M. R. Arefi, S. Rezaei-Zarchi, Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites, Int. J. Mol. Sci. 13(2012):4340-4350.

DOI: 10.3390/ijms13044340

Google Scholar

[42] M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Evaluation of the Efficacy of Traditional and Nano Paraloid B72 for Pottery Consolidation, Int. J. Conserv. Sci. 13 (2022) 15-30.

Google Scholar

[43] J. Zhou, F. Zhao, Y. Wang, Y. Zhang, L. Yang, Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties, J. Lumin. 122-123 (2007) 195–197.

DOI: 10.1016/j.jlumin.2006.01.089

Google Scholar

[44] Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Preparation of ZnO nanostructures by chemical precipitation method, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 41 (2007) 814–819.

DOI: 10.1080/15533174.2011.591308

Google Scholar

[45] T. Theivasanthi, M Alagar, Titanium dioxide (TiO2) Nanoparticles - XRD Analyses – An Insight, Chem. Phys. (2013) 1-10.

Google Scholar

[46] B.K. Paul, S.P. Moulik, Uses and applications of microemulsions, Curr. Sci. 80 (2001) 990-1001.

Google Scholar

[47] A. Sawdy, B. Lubelli, V. Voronina, F. Funke, L. Pel, Optimising the extraction of soluble salts from porous materials by poultices, Stud. Conserv. 55 (2010) 26–40.

DOI: 10.1179/sic.2010.55.1.26

Google Scholar

[48] P.N. Manoudis, A. Tsakalof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou, Fabrication of super-hydrophobic surfaces for enhanced stone protection, Surf. Coat. Technol. 203 (2009) 1322-1328.

DOI: 10.1016/j.surfcoat.2008.10.041

Google Scholar

[49] M.M. Ibrahim, H.M. Mohamed, Experimental study to evaluate the efficiency of some gap filling materials of archaeological pottery, Eur. J. Sci. Theol. 17 (2021) 119-128.

Google Scholar

[50] M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Comparative and Experimental Studies for evaluation of Paraloid B-72 in Traditional and Nano Forms for Joining of Pottery Samples, J. Nano. Res. 61 (2020) 61-71.

DOI: 10.4028/www.scientific.net/jnanor.61.61

Google Scholar