[1]
M. El-Gohary, W. El-Ghareb, M. Saad, Damage quantification of archaeological pottery in Sheikh Hamad Athribis, Sohag-Egypt, Ceram. Int. 45 (2019) 17611–17619.
DOI: 10.1016/j.ceramint.2019.05.326
Google Scholar
[2]
A. Sáenz-Martínez, M. Pérez-Estébanez, M.S. Andrés, M.A. de Buergo, R. Fort, Efficacy of acid treatments used in archaeological ceramics for the removal of calcareous deposits, Eur. Phys. J. Plus. 136 (2021) 1-16.
DOI: 10.1140/epjp/s13360-021-01784-3
Google Scholar
[3]
M.M. Ibrahim, H.M. Mohamed, Analytical methods of archaeological pottery sarcophagus excavated from Saqqara, Egypt, Sci. Cult. 5 (2019) 49.59.
Google Scholar
[4]
A.H. Shams, A.S. AlKaradawi, R.A. Eloriby, Chemical characterization and manufacturing technology of some lustre ceramic dishes of the Abbasid period, northern Egypt, Mediterr. Archaeol. Archaeom. 22(2022) 50-66.
Google Scholar
[5]
M. Barberio, S. Veltri, A. Imbrogno, F. Stranges, A. Bonanno, P. Antici, TiO2 and SiO2 nanoparticles film for cultural heritage: conservation and consolidation of ceramic artifacts, Surf. Coat. Technol. 271 (2015) 174-180.
DOI: 10.1016/j.surfcoat.2014.12.045
Google Scholar
[6]
M. El-Gohary, A. Metawa, Cleaning of architectural bricks using RF plasma Metallic Stains,, Int. J. Conserv. Sci. 7 (2016) 669-682.
Google Scholar
[7]
Y. Cao, A. Salvini, M. Camaiti, Current Status and Future Prospects of Applying Bioinspired Superhydrophobic Materials for Conservation of Stone Artworks, Coatings. 10 (2020) 1-23.
DOI: 10.3390/coatings10040353
Google Scholar
[8]
W.K. Elghareb, Deterioration diagnosis and treatment of some pottery objects from Tell Atrib, Qalyubia, Egypt, Int. J. Conserv. Sci. 12 (2021) 907-920.
Google Scholar
[9]
E. Al‑Emam, A. Motawea, J. Caen, K. Janssens, Complex painted surfaces using a double network gel: empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I—Abydos, Herit. Sci. 9 (2021) 1-10.
DOI: 10.1186/s40494-020-00473-1
Google Scholar
[10]
M. Bárta, V. Brůna, L. Bareš, J. Krejčí, V. Dulíková, M. Odler, H. Vymazalová, Map of archaeological features in Abusir, Prague Egyptological Studies (2020) 7-34.
Google Scholar
[11]
M.E. David, R. Ion, R.M. Grigorescu, L. Iancu, E.R. Andrei, Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview, Mater. 13 (2020) 1-24.
DOI: 10.3390/ma13092064
Google Scholar
[12]
G. Turner-Walker, The nature of cleaning: physical and chemical aspects of removing dirt, stains and corrosion. Conference: International Symposium on Cultural Heritage Conservation. (2012) 1-19.
Google Scholar
[13]
O. Abdel-Kareem Textile conservation past, present and future, Adv. Res. Conserv. Sci. 2 (2021) 1-15.
Google Scholar
[14]
J.S. Pozo-Antonio, A. Ramil, T. Rivas, A.J. López, M.P. Fiorucci, Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite, Constr. Build. Mater. 112 (2016) 682–690.
DOI: 10.1016/j.conbuildmat.2016.02.195
Google Scholar
[15]
R. Abd-Allah, Stabilization and treatment of corroded glass objectsdisplayed in the museum of Jordanian heritage, Mediterr. Archaeol. Archaeom. 7 (2007) 19–28.
Google Scholar
[16]
N.M.N. El Hadidi, H. Abdel-Monem, M.F. Mohamed, G.G. Hashem, Retreatment and Conservation of a Wooden Panel Previously Treated With Bees Wax, Adv. Res. Conserv. Sci. 1 (2020) 48-65.
DOI: 10.21608/arcs.2020.33541.1006
Google Scholar
[17]
M. Baglioni, Y.J. Benavides, A. Desprat-Drapela, R. Giorgi, Amphiphile-based nanofluids for the removal of styrene/acrylate coatings: cleaning of stucco decoration in the Uaxactun archeological site (Guatemala), J. Cult. Herit. 16 (2015) 862–868.
DOI: 10.1016/j.culher.2015.03.008
Google Scholar
[18]
N.A. Bader, A.M. Ashry, The cleaning of the Isis temple's mural paintings in upper Egypt using zinc oxide nanoparticles and non-ionic detergent, Int. J. Conserv. Sci. 7 (2016) 443-458.
Google Scholar
[19]
R.A. Eloriby, W.S. Mohamed, A.S. Alkaradawi, Evaluation of the Impact of Silica and Alumina Nanocomposites in Consolidation and Protection of Corroded Glass from Early Islamic Period in Egypt: An Multiscientific Experimental and Analytical Study, Mediterr. Archaeol. Archaeom. 22 (2022) 67-78.
Google Scholar
[20]
M. El-Gohary, M. Saad, Using some traditional and nanomaterials in the cleaning of ancient Egyptian pottery artifacts (jar and shallow plate) from Athribis, Archaeol. Anthropol. Sci. 12 (2020) 1-12.
DOI: 10.1007/s12520-020-01235-7
Google Scholar
[21]
A. Shakeri, D. Yip, M. Badv, S. M. Imani, M. Sanjari, T.F. Didar, Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO2 Nanoparticles, Materials, 11(2018) 1-16.
DOI: 10.3390/ma11061003
Google Scholar
[22]
E. Jeong, H. Woo, Y. Moon, D.Y. Lee, M. Jung, Y.S. Lee, J.S. Bae, Self-Cleaning Polyester Fabric Prepared with TiOF2 and Hexadecyltrimethoxysilane, Polymers. 13(2021) 1-12.
DOI: 10.3390/polym13030387
Google Scholar
[23]
L. Graziani, E. Quagliarini, F. Bondioli, M. D'Orazio, Durability of self-cleaning TiO2 coatings on fired clay brick façades: Effects of UV exposure and wet & dry cycles, Build. Environ. 71 (2014) 193-203.
DOI: 10.1016/j.buildenv.2013.10.005
Google Scholar
[24]
J.O. Carneiro, V. Teixeira, S. Azevedo, F. Fernandes, J. Neves, Development of photocatalytic ceramic materials through the deposition of TiO2 nanoparticles layers, J. Nano. Res. 18-19 (2012) 165-176.
DOI: 10.4028/www.scientific.net/jnanor.18-19.165
Google Scholar
[25]
S.H. Awad, F. Shaker, Development of self-cleaning bricks surfaces by CaCO3 modified nano-TiO2 composite coatings, J. Phys. Conf. Ser. 1973 (2021) 1-9.
DOI: 10.1088/1742-6596/1973/1/012142
Google Scholar
[26]
F. Weichelt, R. Emmler, R. Flyunt, E. Beyer, M.R. Buchmeiser, M. Beyer, ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications, Macromol. Mater. Eng. 295 (2010) 130–136.
DOI: 10.1002/mame.200900135
Google Scholar
[27]
M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Experimental study for evaluation of Paraloid® B72 and its nanocomposite with nano TiO2 and nano ZnO for consolidation of pottery samples, Sci. Cult. 7 (2021) 101-111.
Google Scholar
[28]
D. Harandi, H. Ahmadi, M.M. Achachluei, Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot, Int. Biodeterior. Biodegrad. 108 (2016) 142-148.
DOI: 10.1016/j.ibiod.2015.12.017
Google Scholar
[29]
K. Segel, I. Brajer, M. Taube, C.M. de Fonjaudran, M. Baglioni, D. Chelazzi, R. Giorgi, P. Baglioni, Removing Ingrained Soiling from Medieval Lime-based Wall Paintings Using Nanorestore Gel® Peggy 6 in Combination with Aqueous Cleaning Liquids, Stud. Conser. 65 (2020) 1-8.
DOI: 10.1080/00393630.2020.1790890
Google Scholar
[30]
H. Moustafa, N.A. Darwish, A.M. Youssef, S. Reda, A.A. El-Wakil, High-Performance of Nanoparticles and Their Effects on the Mechanical, Thermal Stability and UV Shielding Properties of PMMA Nanocomposites. Egypt. J. Chem. 61(2018) 23 - 32.
DOI: 10.21608/ejchem.2017.1932.1159
Google Scholar
[31]
E. Nabil, N. Mahmoud, A.M. Youssef, S. Kameld, Influence of Polymers Loaded with ZnO and TiO2 Nanoparticles on Thermal Resistance of Archaeological Wood, Egypt. J. Chem. 63 (2020) 4645 – 4657.
DOI: 10.21608/ejchem.2020.42596.2859
Google Scholar
[32]
T.M. Butler, B.D. MacCraith, C. McDonagh, Leaching in sol–gel-derived silica films for optical pH sensing, J. Non-Cryst. Solids. 3(1998) 249–258.
DOI: 10.1016/s0022-3093(97)00481-x
Google Scholar
[33]
L.S. Selwyn, V. Argyropoulos, Removal of Chloride and Iron Ions from Archaeological Wrought Iron with Sodium Hydroxide and Ethylenediamine Solutions, Stud. Conser. 50 (2005) 81-100.
DOI: 10.1179/sic.2005.50.2.81
Google Scholar
[34]
Á. Sáenz-Martínez, M. San Andrés, M.A. de Buergo, I. Blasco, R. Fort, Removing calcium carbonate deposits from archaeological ceramics. Traditional methods under review, Mediterr. Archaeol. Archaeom. 19 (2019) 107-117.
DOI: 10.1201/9780429345470-52
Google Scholar
[35]
M.A. Aldosari, S.S. Darwish, M.A. Adam, N.A. Elmarzugi, S.M. Ahmed, Evaluation of preventive performance of kaolin and calcium hydroxide nanocomposites in strengthening the outdoor carved limestone, Archaeol. Anthropol. Sci. 11 (2019) 3389-3405.
DOI: 10.1007/s12520-018-0741-4
Google Scholar
[36]
M.M. Ibrahim, H.M. Mohamed, Analytical Study and Conservation of New Kingdom Period Pottery Jars from Saqqara Excavation, Egypt, Adv. Mat. Res. 1167 (2021) 101-113.
DOI: 10.4028/www.scientific.net/amr.1167.101
Google Scholar
[37]
G. Abdel-Maksoud, M. Abdel-Hamied, H.A. El-Shemy, Analytical techniques used for condition assessment of a late period mummy, J. Cult. Herit. 48 (2021) 83–92.
DOI: 10.1016/j.culher.2021.01.001
Google Scholar
[38]
S. Omar, Characterization of the Ottoman ceramic tiles in the façade of Mustafa Sinan's Sapil (Cairo, Egypt), Sci. Cult. 8 (2022) 1-15.
Google Scholar
[39]
N.S. Abdel Rahim, Analytical study and conservation of archaeological Terra Sigillata ware from roman period, Tripoli, Libya, Sci. Cult. 2 (2016) 19-27.
Google Scholar
[40]
D.K. Verma, S. Patel, K.S. Kushwah, Synthesis of Titanium dioxide (TiO2) nanoparticles and impact on morphological changes, seeds yield and phytotoxicity of Phaseolus vulgaris L., Trop. Plant. Res. 7 (2020) 158-170.
DOI: 10.22271/tpr.2020.v7.i1.021
Google Scholar
[41]
M. R. Arefi, S. Rezaei-Zarchi, Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites, Int. J. Mol. Sci. 13(2012):4340-4350.
DOI: 10.3390/ijms13044340
Google Scholar
[42]
M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Evaluation of the Efficacy of Traditional and Nano Paraloid B72 for Pottery Consolidation, Int. J. Conserv. Sci. 13 (2022) 15-30.
Google Scholar
[43]
J. Zhou, F. Zhao, Y. Wang, Y. Zhang, L. Yang, Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties, J. Lumin. 122-123 (2007) 195–197.
DOI: 10.1016/j.jlumin.2006.01.089
Google Scholar
[44]
Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Preparation of ZnO nanostructures by chemical precipitation method, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 41 (2007) 814–819.
DOI: 10.1080/15533174.2011.591308
Google Scholar
[45]
T. Theivasanthi, M Alagar, Titanium dioxide (TiO2) Nanoparticles - XRD Analyses – An Insight, Chem. Phys. (2013) 1-10.
Google Scholar
[46]
B.K. Paul, S.P. Moulik, Uses and applications of microemulsions, Curr. Sci. 80 (2001) 990-1001.
Google Scholar
[47]
A. Sawdy, B. Lubelli, V. Voronina, F. Funke, L. Pel, Optimising the extraction of soluble salts from porous materials by poultices, Stud. Conserv. 55 (2010) 26–40.
DOI: 10.1179/sic.2010.55.1.26
Google Scholar
[48]
P.N. Manoudis, A. Tsakalof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou, Fabrication of super-hydrophobic surfaces for enhanced stone protection, Surf. Coat. Technol. 203 (2009) 1322-1328.
DOI: 10.1016/j.surfcoat.2008.10.041
Google Scholar
[49]
M.M. Ibrahim, H.M. Mohamed, Experimental study to evaluate the efficiency of some gap filling materials of archaeological pottery, Eur. J. Sci. Theol. 17 (2021) 119-128.
Google Scholar
[50]
M.M. Ibrahim, W.S. Mohamed, H.M. Mohamed, Comparative and Experimental Studies for evaluation of Paraloid B-72 in Traditional and Nano Forms for Joining of Pottery Samples, J. Nano. Res. 61 (2020) 61-71.
DOI: 10.4028/www.scientific.net/jnanor.61.61
Google Scholar