[1]
H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, On the challenge of developing advanced technologies for electrochemical energy storage and conversion,, Mater. Today (2014) 17, 110–121.
DOI: 10.1016/j.mattod.2014.02.014
Google Scholar
[2]
T. Ould Ely, D. Kamzabek, D. Chakraborty, and M. F. Doherty, Lithium-Sulfur Batteries: State of the Art and Future Directions,, ACS Appl. Energy Mater. (2018) 5, 1783–1814.
DOI: 10.1021/acsaem.7b00153
Google Scholar
[3]
C. Zha, X. Gu, D. Wu, and H. Chen, Interfacial active fluorine site-induced electron transfer on TiO2 (001) facets to enhance polysulfide redox reactions for better liquid Li2S6-Based lithium-sulfur batteries,, J. Mater. Chem. A. (2019) 7, 6431–6438.
DOI: 10.1039/c8ta11732b
Google Scholar
[4]
R. Kumar, J. Liu, J. Y. Hwang, and Y. K. Sun, Recent research trends in Li-S batteries,, J. Mater. Chem. A. (2018) 6, 11582–11605.
DOI: 10.1039/c8ta01483c
Google Scholar
[5]
C. Maurer, W. Commerell, A. Hintennach, and A. Jossen, Capacity recovery effect in lithium-sulfur batteries for electric vehicles,, World Electr. Veh. J. (2018) 9, 1–11.
DOI: 10.3390/wevj9020034
Google Scholar
[6]
J. Zhu, J. Zou, H. Cheng, Y. Gu, and Z. Lu, High Energy Batteries Based on Sulfur Cathode,, Green Energy Environ. (2018) 4, 1–15.
Google Scholar
[7]
A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Gorsuch, and F. Francois Chesneau, Review on Li-Sulfur Battery Systems: An Integral Perspective. Adv. Energy Materials (2015) 5, 212.
DOI: 10.1002/aenm.201500212
Google Scholar
[8]
A. Fotouhi, D. J. Auger, L. O'Neill, T. Cleaver, and S. Walus, Lithium-sulfur battery technology readiness and applications - A review,, Energies, (2017) 10, (1937).
DOI: 10.3390/en10121937
Google Scholar
[9]
K. Suzuki et al., Synthesis, Structure, and Electrochemical Properties of a Sulfur-Carbon Replica Composite Electrode for All-Solid-State Li-Sulfur Batteries,, J. Electrochem. Soc. (2017) 164, A6178–A6183.
DOI: 10.1149/2.0341701jes
Google Scholar
[10]
C. Dong, W. Gao, B. Jin, and Q. Jiang, Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries,, iScience. (2018) 6, 151–198.
DOI: 10.1016/j.isci.2018.07.021
Google Scholar
[11]
Z. Lin and C. Liang, Lithium-sulfur batteries: From liquid to solid cells,, J. Mater. Chem. A, (2015) 3, 936–958.
DOI: 10.1039/c4ta04727c
Google Scholar
[12]
F. Liu et al., Reduced graphene oxide encapsulated sulfur spheres for the lithium-sulfur battery cathode,, Results Phys. (2017) 7, 250–255.
DOI: 10.1016/j.rinp.2016.12.049
Google Scholar
[13]
X. Zhou, Y. Li, G. Ma, Q. Ma, and Z. Lei, One-step solid-state synthesis of sulfur-reduced graphene oxide composite for lithium-sulfur batteries,, J. Alloys Compd. (2016) 685, 216–221.
DOI: 10.1016/j.jallcom.2016.05.171
Google Scholar
[14]
L. Wang, Y. Zhao, M. Thomas, and H. Byon, In Situ Synthesis of Bipyramidal Sulfur with 3D Carbon Nanotube Framework for Lithium-Sulfur Batteries, Adv. Functional Materials. (2014) 24, 2248-2252.
DOI: 10.1002/adfm.201302915
Google Scholar
[15]
S. Nasir, Carbon-Based Nanomaterials / Allotropes : A Glimpse of Their Synthesis, Properties and Some Applications,, Materials. (2018) 11, 1–24.
DOI: 10.3390/ma11020295
Google Scholar
[16]
M. Pumera, Electrochemistry of graphene, graphene oxide and other graphenoids: Review, Electrochemistry Communications (2013) 36, 14-18.
DOI: 10.1016/j.elecom.2013.08.028
Google Scholar
[17]
J. Moo et al., One-Pot Synthesis of Graphene-Sulfur Composites for Li-S Batteries: Influence of Sulfur Precursors,, Journal of Carbon Research. (2017) 4, 2.
DOI: 10.3390/c4010002
Google Scholar
[18]
C. Wang, X. Wang, Y. Wang, and J. Chen, Macroporous free-standing nano-sulfur / reduced graphene oxide paper as stable cathode for lithium-sulfur battery,, Nano Energy. (2015) 11, 678–686.
DOI: 10.1016/j.nanoen.2014.11.060
Google Scholar
[19]
Y. Zhang et al., Preparation of monodispersed sulfur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulfur battery,, Carbon. (2017) 114, 8–14.
DOI: 10.1016/j.carbon.2016.11.079
Google Scholar
[20]
C. Yao, Y. Sun, K. Zhao, T. Wu, A. Mauger, and C. M. Julien, graphene oxide – sulfur composites as lithium-sulfur battery cathodes †,, RSC Adv. (2018) 8, 3443–3452.
DOI: 10.1039/c7ra12194f
Google Scholar
[21]
Y. Su, X. Gao, and J. Zhao, Reaction mechanisms of graphene oxide chemical reduction by sulfur-containing compounds,, Carbon N. Y. (2014) 67, 146–155.
DOI: 10.1016/j.carbon.2013.09.073
Google Scholar
[22]
J. L. Gómez-Urbano et al., Hydrothermally reduced graphene oxide for the effective wrapping of sulfur particles showing long term stability as electrodes for Li-S batteries,, Carbon N. Y., (2018) 139, 226–233.
DOI: 10.1016/j.carbon.2018.06.053
Google Scholar
[23]
R. Alibeyli, A. Ata, and E. Topaç, Reduced Graphene Oxide Synthesis via Improved Hummers' Method,, Akad. Platf. (2017) , 0–10.
Google Scholar
[24]
C. Panatarani, N. Muthahhari, A. Rianto, and I. M. Joni, Purification and preparation of graphite oxide from natural graphite,, AIP Conf. Proc. (2016) 1719, 030022-1 - 030022-6.
DOI: 10.1063/1.4943717
Google Scholar
[25]
F. Pendolino and N. Armata, Graphene Oxide in Environmental Remediation Process,, SpringerBriefs in Applied Sciences and Technology, New York City (2017).
DOI: 10.1007/978-3-319-60429-9_4
Google Scholar
[26]
Mehwish Abro, Modelling the exfoliation of graphite for production of graphene, Ph.D. Dissertation (2015).
Google Scholar
[27]
Suneetha, R. et al Spectral, Thermal and Morphological Characterization of Biodegradable Graphene Oxide-Chitosan Nanocomposites,. Journal of Nanoscience and Technology. (2018) 04, 342-344.
DOI: 10.30799/jnst.sp208.18040201
Google Scholar
[28]
Shahriar L, Athawale AA. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014 Jan;2(01):58-63.
Google Scholar
[29]
P. Zhu et al., Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries,, Carbon N. Y.(2018) 126, 594–600.
DOI: 10.1016/j.carbon.2017.10.063
Google Scholar
[30]
G. Radhika, K. Krishnaveni, R. Subadevi, and M. Sivakumar, Investigations On Physical Properties Of Sulfur Based Composite Cathodes In Lithium Sulfur Battery Fabrication,, IRJET Journal (2017), 53–57.
DOI: 10.1016/b978-0-12-821548-7.00012-9
Google Scholar
[31]
M. R. Sovizi, M. R. Yaftian, and T. Seyyedin, Reduced graphene oxide@ sulfur nanocomposite as a high capacity host matrix for advanced lithium-sulfur batteries, New J. Chem. (2017) 41, 12589-12595.
DOI: 10.1039/c7nj00123a
Google Scholar