[1]
Q. Wang, A. Wu, L. Yu, Z. Liu, W. Xu, H. Yang, Nanocomposites of Iron−Cobalt Alloy and Magnetite: Controllable Solvothermal Synthesis and Their Magnetic Properties, J. Phys. Chem. C. 113 (2009) 19875-19882.
DOI: 10.1021/jp909049b
Google Scholar
[2]
A. Chauhan, R. Vaish, Magnetic material selection using multiple attribute decision making approach, Mater. Design. 36 (2012) 1-5.
DOI: 10.1016/j.matdes.2011.11.021
Google Scholar
[3]
N. Kang, M. El Mansori, F. Guittonneau, H. Lia, Y. Fu, E. Aubry, Controllable mesostructure, magnetic properties of soft magnetic Fe-Ni-Si by using selective laser melting from nickel coated high silicon steel powder, J. Appl. Surf. Sci. 455 (2018) 736-741.
DOI: 10.1016/j.apsusc.2018.06.045
Google Scholar
[4]
N. Singh, S. Sharma, O. Parkash, D. Kumar, Synthesis and Characterization of Nanocrystalline Fe(100-x)Ni(x) Alloy Powders by Auto-combustion and Hydrogen Reduction, J. Mater. Eng. Perform. 28 (2019) 5441-5449.
DOI: 10.1007/s11665-019-04330-6
Google Scholar
[5]
D. Yao, H. Li, Y. Dai, C-H. Wang, Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste, Chem. Eng. Sci. 408 (2021) 127268.
DOI: 10.1016/j.cej.2020.127268
Google Scholar
[6]
G. Yang and S. J. Park, Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review, Materials (Basel). 12(7) (2019) 1177.
DOI: 10.3390/ma12071177
Google Scholar
[7]
T. Barbier, B.Srinivasan, D. Berthebaud, V. Eyert, R. Frésard, R. Macaigne, S. Marinel, O. I. Lebedev, E. Guilmeau, A. Maignan, Structure and thermoelectric properties of single-phase isocubanite CuFe2S3 synthesized by mechanical-alloying and ultra-fast microwave radiation technique, Sustain. Energy Fuels. 5 (2021) 5804-5813.
DOI: 10.1039/d1se01007g
Google Scholar
[8]
T. Şimşek, S. Akgül, O. Özkul, B. Avar, A. K. Chattopadhyay, C. A. Canbay, S. H. Güler, A comparison of magnetic, structural and thermal properties of NiFeCoMo high entropy alloy produced by sequential mechanical alloying versus the alloy produced by conventional mechanical alloying, Materials Today, 29 (2021) 102986.
DOI: 10.1016/j.mtcomm.2021.102986
Google Scholar
[9]
K. Zaara, M. Khitouni, L. Escoda, J. Saurina, J. Sunol, N. Llorca-Isern and M. Chemingui, Microstructural and magnetic behaviour of nanocrystalline Fe-12Ni-16B-2Si Alloy Synthesis and Characterization, Metals. 11 (2021) 167.
DOI: 10.3390/met11111679
Google Scholar
[10]
N. H. Abdullah, M. S. Mustafa, M. N. Hamidon, F. N. Shafe, I. Ismail, I. R. Ibrahim, Isochronal recovery behaviour on electromagnetic properties of polycrystalline nickel zinc ferrite (Ni0.5Zn0.5Fe2O4)prepared via mechanical alloying, Sci. Rep. 11 (2021) 19642.
DOI: 10.1038/s41598-021-99236-6
Google Scholar
[11]
H. Ibn. Gharsallah, M. Azabou, L. Escoda, J. J. Suñol, I. López, N. Llorca-Isern, M. Khitouni, The magnetic and structural properties of nanostructured (Fe75Al25)100-xBx alloys prepared by mechanical alloying, J. Alloy. Compd. 729 (2017) 776-786.
DOI: 10.1016/j.jallcom.2017.09.229
Google Scholar
[12]
R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, Preparation of nanocrystalline Fe–Ni powders by mechanical alloying used in soft magnetic composites, J. Magn. Magn.Mater. 320 (2008) 1089-1094.
DOI: 10.1016/j.jmmm.2007.10.033
Google Scholar
[13]
B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, second ed, John Wiley & Sons, Inc. Hoboken, NJ, (2009).
Google Scholar
[14]
Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto, T. Ohmi, High permeability and low loss Ni–Fe composite material for high-frequency applications , IEEE Transition. Magn. 44 (9) (2008) 2100-2106.
DOI: 10.1109/tmag.2008.2001073
Google Scholar
[15]
M. W. R.Volk, M. R.Wack, B. J. Maier, Monitoring the alloying process of mechanically synthesized Fe80Ni20 through changes in magnetic properties, J. Alloy. Compd. 732 (2018) 336-342.
DOI: 10.1016/j.jallcom.2017.10.090
Google Scholar
[16]
V. A. Shabashov, V. V. Sagaradze, A. V. Litvinov, and A. E. Zamatovskii, Relaxation of the structure of Fe-Ni alloys during mechanical alloying induced by severe plastic deformation, The Phys. Met. Metallog. 116 (9) (2015) 869-878.
DOI: 10.1134/s0031918x1509015x
Google Scholar
[17]
M.W.R. Volk, M. R. Wack, B. J. Maier, Monitoring the alloying process of mechanically synthesized Fe80Ni20 through changes in magnetic properties, J. Alloy. Compd. 732 (2018) 336-342.
DOI: 10.1016/j.jallcom.2017.10.090
Google Scholar
[18]
S. B. Dalavi, J. Theerthagiri, M. M. Raja, R. N. Panda, Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys, J. Magn. Magn.Mater. 344 (2013) 30-34.
DOI: 10.1016/j.jmmm.2013.05.026
Google Scholar
[19]
R. Chater, M. Bououdina, D. Chaanbi, H. Abbas, Synthesis and magnetization studies of nanopowder Fe70Ni20Cr10 alloys prepared by high energy milling, J. Solid State. Chem 201 (2013) 317-323.
DOI: 10.1016/j.jssc.2013.02.028
Google Scholar
[20]
F. Hadef, A. Otmani, A. Djekoun, J. M. Grenèche, Investigation of mechanosynthesized Fe50Ni40Al10 powders, J. Magn. Magn.Mater. 343 (2013) 214-220.
DOI: 10.1016/j.jmmm.2013.04.074
Google Scholar
[21]
L. Lutterotti, MAUD CPD Newsletter (IUCr) 24, (2000).
Google Scholar
[22]
M. H. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 22 (1969) 65.
Google Scholar
[23]
K. Lagarek, D. Rancourt, Recoil Software, Physics Department, University of Ottawa, (1998).
Google Scholar
[24]
A. H. Bahrami, H. Ghayour, S. Sharafi, Evolution of microstructural and magnetic properties of mechanically alloyed Fe80-xNi20Six nanostructured powders, J. Powder Technol. 249 (2013) 7-14.
DOI: 10.1016/j.powtec.2013.07.024
Google Scholar
[25]
R. W. Cahn, Lattice parameter changes on disordering intermetallics, J. Intermetallics, 7 (1999) 1089-1094.
DOI: 10.1016/s0966-9795(99)00035-7
Google Scholar
[26]
C. Suryanarayana, Mechanical Alloying and Milling, 1st ed, Marcel Dekker, New York, (2004).
Google Scholar
[27]
N. Boukherroub, A. Guittoum, A. Laggoun, M. Hemmous, D. Martínez-Blanco, J. A. Blanco, N. Souami, P. Gorria, A. Bourzami, O. Lenoble. Microstructure and magnetic properties of nanostructured (Fe0.8Al0.2)100-xSix alloy produced by mechanical alloying, J. Magn.Magn.Mater. 385 (2015) 151-159.
DOI: 10.1016/j.jmmm.2015.03.011
Google Scholar
[28]
A. H. Bahrami, S. Sharafi, H. Ahmadian Baghbaderani, The effect of Si addition on the microstructure and magnetic properties of Permalloy prepared by mechanical alloying method, J. Adv. Powder. Technol. 24 (2013) 235-241.
DOI: 10.1016/j.apt.2012.06.008
Google Scholar
[29]
M. Kezrane, A. Guittoum, M. Hemmous, S. Lamrani, A. Bourzami, W. Weber, Elaboration, Microstructure, and Magnetic Properties of Nanocrystalline Fe90Ni10 Powders, J Supercond Nov Magn. 28 (2015) 2473-2481.
DOI: 10.1007/s10948-015-3059-9
Google Scholar
[30]
S. Singhala, K. Chandra, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route, J. Solid State Chem. 180 (2007) 296–300.
DOI: 10.1016/j.jssc.2006.10.010
Google Scholar
[31]
L. Faghi, S. Triaa, F. Siahmed, M. Azzaz,Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling, J. Mater. Res. 105 (1) (2014) 32-38.
DOI: 10.3139/146.110986
Google Scholar
[32]
A. Abouchenari, M. Moradi, Effect of Cu-Substitution on the Microstructure and Magnetic Properties of Fe-15%Ni alloy Prepared by Mechanical Alloying, J. Compos. Compd. 1 (1) (2019) 13-20.
DOI: 10.29252/jcc.1.1.2
Google Scholar
[33]
N. Boukherroub, A. Guittoum, N. Souami, K. Akkouche, S. Boutarfaia, Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-xAlx powders elaborated by mechanical alloying, EPJ Web of Conferences. 29 (00010) (2012) 1–10.
DOI: 10.1051/epjconf/20122900010
Google Scholar
[34]
A. Guittoum, A. Layadi, H. Tafat, A. Bourzami, N. Souami, O. Lenoble, Structure, Mössbauer and magnetic studies of nanostructured Fe80Ni20 alloy elaborated by mechanical milling, J. Philo. Maga. 88(7) (2008) 1085-1098.
DOI: 10.1080/14786430802039933
Google Scholar