Ag Nanostructure Morphologies and Physicochemical Properties Dictated by the Polyols Used in the Synthesis

Article Preview

Abstract:

: The mixing of ethylene glycol (EG) with diethylene glycol (DEG) has been studied to analyse the effect of viscosity rise of solvent on the Ag nanostructures and their morphologies. The rise of viscosity has been adjusted by increasing the molar ratio of DEG to EG under optimized conditions of temperature and capping agent- polyvinylpyrrolidone (PVP). It has been seen that increasing the proportion of DEG resulted increasing the viscosity of solution and thus decreased the diameter of nanowires. The production of quantum nanowires has further become possible during reaction. The synthesized material was characterized using UV−Vis spectroscopy, SEM, EDX, XRD, PL and DSC. Surface Plasmon resonance and luminescence was determined using UV−Vis spectroscopy and PL spectroscopy. The data showed that Ag nanowires have a strong absorption band at 356 nm and 401 nm which can be attributed to the transverse and longitudinal surface Plasmon resonance. The XRD results indicated that the prepared product is made of pure Ag with face centred cubic structure, and the DSC analysis demonstrated the presence of amorphous domain within metal nanostructures. Finally, temperature fluctuations have caused the formation of nanoparticle of different shapes and sizes which bears the synthetic mechanistic insights. Our research work supplies new evidence to illustrate the actual growth mechanism and kinetics of silver nanowires. The main objective of this study is to investigate the effect of solvent in polyol synthesis of silver nanowires (Ag NWs) on the nanostructures diameter and morphologies

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-106

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Li, A. Meredov, A. Shamim, Coat-and-print patterning of silver nanowires for flexible and transparent electronics. npj Flexible Electronics. 2019, 3 (1), 1-7. https://doi.org/10.1038/s41528-019-0063-3.

DOI: 10.1038/s41528-019-0063-3

Google Scholar

[2] D. Anh Dinh, K. Nam Hui, K. San Hui, J. Singh, P .Kumar, W. Zhou, Silver nanowires: a promising transparent conducting electrode material for optoelectronic and electronic applications, Rev. Adv. Sci 2013,2(4),324-345. https://doi.org/10.1166/rase.2013.1048.

DOI: 10.1166/rase.2013.1048

Google Scholar

[3] L. Q.A. Cortes, E.Dantras, C.Lacabanne, High-performance thermoplastic composites poly (ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, J. Non- Cryst. Solids 2014, 391, 106-111. https://doi.org/10.1016/j.jnoncrysol.

DOI: 10.1016/j.jnoncrysol.2014.03.016

Google Scholar

[4] Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods, Commun. Chem. 2001, (7), 617-618. https://doi.org/10.1039/B100521I.

DOI: 10.1039/b100521i

Google Scholar

[5] M. B. Gebeyehu, T. F. Chala, S.Y Chang, C.M .Wu, J.Y Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method, RSC. Adv. 2017, 7 (26), 16139-16148. https://doi.org/10.1039/C7RA00238F.

DOI: 10.1039/c7ra00238f

Google Scholar

[6] J.J. Zhu, X.H Liao, X.N Zhao, H.Y Chen, Preparation of silver nanorods by electrochemical methods, Mater. Lett. 2001, 49 (2), 91-95. https://doi.org/10.1016/S0167-577X(00)00349-9.

DOI: 10.1016/s0167-577x(00)00349-9

Google Scholar

[7] J.Y. Lin,Y.L .Hsueh, J.J. Huang, J.R. Wu, Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films. Thin Solid Films 2015, 584, 243-247.https://doi.org/10.1016/j.tsf.2015.02.067.

DOI: 10.1016/j.tsf.2015.02.067

Google Scholar

[8] A. Zahoor, Q.Teng, H.Wang, M .Choudhry, X. Li,Synthesis and characterization of Ag@ polycarbazole coaxial nanocables and their enhanced dispersion behavior. Metals and Materials International 2011, 17 (3), 417-423. https://doi.org/10.1007/s12540-011-0618-x.

DOI: 10.1007/s12540-011-0618-x

Google Scholar

[9] A. Zahoor, M. Maqsood, M. Mehmood, M. J.Ahmad, M. A. Choudhary, Synthesis and characterization of pure and nano-Ag impregnated chitosan beads and determination of catalytic activities of nano-Ag, Bulletin of Chemical Reaction Engineering & Catalysis 2017, 12 (1), 127-135. https://doi.org/10.9767/bcrec.12.1.860.127-135.

DOI: 10.9767/bcrec.12.1.860.127-135

Google Scholar

[10] S. Kaabipour, S.Hemmati, A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology 2021, 12 (1), 102-136. https://doi.org/10.3762/bjnano.12.9.

DOI: 10.3762/bjnano.12.9

Google Scholar

[11] J.Pulit-Prociak, M. Banach, Silver nanoparticles–a material of the future, Open Chemistry 2016, 14 (1), 76-91. https://doi.org/10.1515/chem-2016-0005.

DOI: 10.1515/chem-2016-0005

Google Scholar

[12] Meshesha, B. T.; Barrabés, N.; Medina, F.; Sueiras, J. E., Polyol mediated synthesis & characterization of Cu nanoparticles: Effect of 1-hexadecylamine as stabilizing agent. Nanotechnology 2009, 1, 87-91. https://doi.org/10.1039/B103167H.

Google Scholar

[13] W .Zhang, P. Chen, Q.Gao, Y .Zhang, Y .Tang, High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method, Chem. Mater 2008, 20 (5), 1699-1704. https://doi.org/10.1021/cm7022554.

DOI: 10.1021/cm7022554

Google Scholar

[14] C. Jia, P. Yang, A. Zhang, Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires, Mater. Chem. Phys. 2014, 143 (2), 794-800. https://doi.org/10.1016/j.matchemphys.2013.10.015.

DOI: 10.1016/j.matchemphys.2013.10.015

Google Scholar

[15] B.Wiley, Y .Sun, Y. Xia, Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species, Langmuir 2005, 21 (18), 8077-8080. https://doi.org/10.1021/la050887i.

DOI: 10.1021/la050887i

Google Scholar

[16] Z. Yi, X, Xu, X. Tan, L. Liu, W. Zhang, Y. Yi, J. Luo, W. Yao, Y. Yi, T. Duan, Microwave-assisted polyol method rapid synthesis of high quality and yield Ag nanowires, Surf. Coat. Technol. 2017, 327, 118-125. https://doi.org/10.1016/j.surfcoat.2017.08.024.

DOI: 10.1016/j.surfcoat.2017.08.024

Google Scholar

[17] T.Chen, H.Wang, H.Yang, S.Bai, X.Guo, Mixed polyols synthesis of high aspect ratio silver nanowires for transparent conductive films, Mater. Res. Express 2018, 5 (6), 066426. https://doi.org/10.1088/2053-1591/aacd3e.

DOI: 10.1088/2053-1591/aacd3e

Google Scholar

[18] S. Coskun, B. Aksoy, H. E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 2011, 11 (11), 4963-4969. https://doi.org/10.1021/cg200874g.

DOI: 10.1021/cg200874g

Google Scholar

[19] M. R.Johan, N. A. K.Aznan, S. T.Yee, I. H.Ho, S. W.Ooi, N.Darman Singho, F.Aplop , Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. Journal of Nanomaterials 2014, 2014. https://doi.org/10.1155/2014/105454.

DOI: 10.1155/2014/105454

Google Scholar

[20] R.Sarkar, P.Kumbhakar, A. K.Mitra, R. A.Ganeev, Synthesis and photoluminescence properties of silver nanowires, Curr. Appl. Phys. 2010, 10 (3), 853-857. https://doi.org/10.1038/s41528-019-0063-3.

DOI: 10.1016/j.cap.2009.10.007

Google Scholar

[21] T. Araki, R.Mandamparambil, D. M. P.van Bragt, J.Jiu, H.Koga, J.van den Brand, T. Sekitani, J. M. Den Toonder, K. Suganuma, Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques, J. Nanotechnol 2016, 27 (45). https://doi.org/10.1088/0957-4484/27/45/45LT02.

DOI: 10.1088/0957-4484/27/45/45lt02

Google Scholar

[22] Y.Zhang Li, X.Yuan, H.Yang, Y.Chao, S.Guo, C.Wang, One-step synthesis of silver nanowires with ultra-long length and thin diameter to make flexible transparent conductive films. Materials 2019, 12 (3), 401. https://doi.org/10.3390/ma12030401.

DOI: 10.3390/ma12030401

Google Scholar

[23] G.C. He, H .Lu, X.Z Dong, Y .L. Zhang, J.Liu, C. Q.Xie, Z. S.Zhao, Electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer. RSC Adv. 2018, 8 (44), 24893-24899. https://doi.org/10.1039/C8RA03280G.

DOI: 10.1039/c8ra03280g

Google Scholar

[24] P. I .Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications Mater. Sci. Eng. 2017, 223, 1-23. https://doi.org/10.1016/j.mseb.2017.05.002.

DOI: 10.1016/j.mseb.2017.05.002

Google Scholar

[25] G. Antarnusa, Y. R. Denny, A.Suherman, I. S.Utami, A. Saefullah, The Effect of Additional Polyethylene Glycol (PEG) as Coating Fe3O4 for Magnetic Nanofluid Applications, Chem.Eng. 2021, 14(4), 335-346. https://doi.org/10.2174/2405520414666210325122511.

DOI: 10.2174/2405520414666210325122511

Google Scholar

[26] Y.Sun, Y, Xia, Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process, Advanced Materials 2002, 14 (11), 833-837. https://doi.org/10.1002/1521-4095(20020605)14:11%3C833.

DOI: 10.1002/1521-4095(20020605)14:11<833::aid-adma833>3.0.co;2-k

Google Scholar

[27] H. Kumar, R. Rani, Structural characterization of silver nanoparticles synthesized by micro emulsion route. Int J Eng Innov Technol 2013, 3 (3), 344-348. https://doi.org/10.18052/www.scipress.com/ILCPA.19.26.

Google Scholar

[28] K.S. Joya, Z. Ahmad, A.T. Garcia-Esparza, H.J. de Groot, Efficient electrochemical water oxidation in neutral and near-neutral systems with a nanoscale silver-oxide catalyst. Nanoscale 2016, 8 (32), 15033-15040. https://doi.org/10.1039/C6NR03147A.

DOI: 10.1039/c6nr03147a

Google Scholar

[29] Z.Ahmad, M. Choudhary, M.A. Mirza, Synthesis and characterization of Ag@ polycarbazole nanoparticles using different oxidants and their dispersion behavior. J., Mater Sci 2016, 34 (1), 79-84. https://doi.org/10.1515/msp-2016-0019.

DOI: 10.1515/msp-2016-0019

Google Scholar

[30] X.Yan, J .Ma, H. Xu, C. Wang, Y. Liu, Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes, J. Phys. 2016, 49 (32), 325103. https://doi.org/10.1088/0022-3727/49/32/325103.

DOI: 10.1088/0022-3727/49/32/325103

Google Scholar

[31] A.Chen, H. Xie, H. Wang, H. Li, , X. Li, Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals 2006, 156 (2-4), 346-350. https://doi.org/10.1016/j.synthmet.2005.12.017.

DOI: 10.1016/j.synthmet.2005.12.017

Google Scholar

[32] Y.Zhao, M. L. Fitzgerald, Y.Tao, Z.Pan, G.Sauti, D. Xu, Y.Q, Xu, D. Li, Electrical and thermal transport through silver nanowires and their contacts: Effects of elastic stiffening. Nano Letters 2020, 20 (10), 7389-7396. https://doi.org/10.1021/acs.nanolett.0c02014.

DOI: 10.1021/acs.nanolett.0c02014

Google Scholar

[33] P.P. AdhyapakKarandikar, K. Vijayamohanan, A. Athawale, A. Chandwadkar, Synthesis of silver nanowires inside mesoporous MCM-41 host. Mater. Lett. 2004, 58 (7-8), 1168-1171. https://doi.org/10.1016/j.matlet.2003.09.008.

DOI: 10.1016/j.matlet.2003.09.008

Google Scholar

[34] K. E. Korte, S. E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl-or CuCl 2-mediated polyol process, J. Mater. Chem. 2008, 18 (4), 437-441. https://doi.org/10.1039/B714072J.

DOI: 10.1039/b714072j

Google Scholar

[35] P. N. Prasad, Polymeric materials for non-linear optics and photonics. Polym. J. 1991, 32 (10), 1746-1751. https://doi.org/10.1016/0032-3861(91)90357-O.

DOI: 10.1016/0032-3861(91)90357-o

Google Scholar

[36] L. W. ZhangZhu, Y. Huang, S.Qi, Synergetic effects of silver nanowires and graphene oxide on thermal conductivity of epoxy composites. Nanomaterials 2019, 9 (9), 1264. https://doi.org/10.3390/nano9091264.

DOI: 10.3390/nano9091264

Google Scholar