[1]
W. Li, A. Meredov, A. Shamim, Coat-and-print patterning of silver nanowires for flexible and transparent electronics. npj Flexible Electronics. 2019, 3 (1), 1-7. https://doi.org/10.1038/s41528-019-0063-3.
DOI: 10.1038/s41528-019-0063-3
Google Scholar
[2]
D. Anh Dinh, K. Nam Hui, K. San Hui, J. Singh, P .Kumar, W. Zhou, Silver nanowires: a promising transparent conducting electrode material for optoelectronic and electronic applications, Rev. Adv. Sci 2013,2(4),324-345. https://doi.org/10.1166/rase.2013.1048.
DOI: 10.1166/rase.2013.1048
Google Scholar
[3]
L. Q.A. Cortes, E.Dantras, C.Lacabanne, High-performance thermoplastic composites poly (ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, J. Non- Cryst. Solids 2014, 391, 106-111. https://doi.org/10.1016/j.jnoncrysol.
DOI: 10.1016/j.jnoncrysol.2014.03.016
Google Scholar
[4]
Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods, Commun. Chem. 2001, (7), 617-618. https://doi.org/10.1039/B100521I.
DOI: 10.1039/b100521i
Google Scholar
[5]
M. B. Gebeyehu, T. F. Chala, S.Y Chang, C.M .Wu, J.Y Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method, RSC. Adv. 2017, 7 (26), 16139-16148. https://doi.org/10.1039/C7RA00238F.
DOI: 10.1039/c7ra00238f
Google Scholar
[6]
J.J. Zhu, X.H Liao, X.N Zhao, H.Y Chen, Preparation of silver nanorods by electrochemical methods, Mater. Lett. 2001, 49 (2), 91-95. https://doi.org/10.1016/S0167-577X(00)00349-9.
DOI: 10.1016/s0167-577x(00)00349-9
Google Scholar
[7]
J.Y. Lin,Y.L .Hsueh, J.J. Huang, J.R. Wu, Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films. Thin Solid Films 2015, 584, 243-247.https://doi.org/10.1016/j.tsf.2015.02.067.
DOI: 10.1016/j.tsf.2015.02.067
Google Scholar
[8]
A. Zahoor, Q.Teng, H.Wang, M .Choudhry, X. Li,Synthesis and characterization of Ag@ polycarbazole coaxial nanocables and their enhanced dispersion behavior. Metals and Materials International 2011, 17 (3), 417-423. https://doi.org/10.1007/s12540-011-0618-x.
DOI: 10.1007/s12540-011-0618-x
Google Scholar
[9]
A. Zahoor, M. Maqsood, M. Mehmood, M. J.Ahmad, M. A. Choudhary, Synthesis and characterization of pure and nano-Ag impregnated chitosan beads and determination of catalytic activities of nano-Ag, Bulletin of Chemical Reaction Engineering & Catalysis 2017, 12 (1), 127-135. https://doi.org/10.9767/bcrec.12.1.860.127-135.
DOI: 10.9767/bcrec.12.1.860.127-135
Google Scholar
[10]
S. Kaabipour, S.Hemmati, A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology 2021, 12 (1), 102-136. https://doi.org/10.3762/bjnano.12.9.
DOI: 10.3762/bjnano.12.9
Google Scholar
[11]
J.Pulit-Prociak, M. Banach, Silver nanoparticles–a material of the future, Open Chemistry 2016, 14 (1), 76-91. https://doi.org/10.1515/chem-2016-0005.
DOI: 10.1515/chem-2016-0005
Google Scholar
[12]
Meshesha, B. T.; Barrabés, N.; Medina, F.; Sueiras, J. E., Polyol mediated synthesis & characterization of Cu nanoparticles: Effect of 1-hexadecylamine as stabilizing agent. Nanotechnology 2009, 1, 87-91. https://doi.org/10.1039/B103167H.
Google Scholar
[13]
W .Zhang, P. Chen, Q.Gao, Y .Zhang, Y .Tang, High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method, Chem. Mater 2008, 20 (5), 1699-1704. https://doi.org/10.1021/cm7022554.
DOI: 10.1021/cm7022554
Google Scholar
[14]
C. Jia, P. Yang, A. Zhang, Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires, Mater. Chem. Phys. 2014, 143 (2), 794-800. https://doi.org/10.1016/j.matchemphys.2013.10.015.
DOI: 10.1016/j.matchemphys.2013.10.015
Google Scholar
[15]
B.Wiley, Y .Sun, Y. Xia, Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species, Langmuir 2005, 21 (18), 8077-8080. https://doi.org/10.1021/la050887i.
DOI: 10.1021/la050887i
Google Scholar
[16]
Z. Yi, X, Xu, X. Tan, L. Liu, W. Zhang, Y. Yi, J. Luo, W. Yao, Y. Yi, T. Duan, Microwave-assisted polyol method rapid synthesis of high quality and yield Ag nanowires, Surf. Coat. Technol. 2017, 327, 118-125. https://doi.org/10.1016/j.surfcoat.2017.08.024.
DOI: 10.1016/j.surfcoat.2017.08.024
Google Scholar
[17]
T.Chen, H.Wang, H.Yang, S.Bai, X.Guo, Mixed polyols synthesis of high aspect ratio silver nanowires for transparent conductive films, Mater. Res. Express 2018, 5 (6), 066426. https://doi.org/10.1088/2053-1591/aacd3e.
DOI: 10.1088/2053-1591/aacd3e
Google Scholar
[18]
S. Coskun, B. Aksoy, H. E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 2011, 11 (11), 4963-4969. https://doi.org/10.1021/cg200874g.
DOI: 10.1021/cg200874g
Google Scholar
[19]
M. R.Johan, N. A. K.Aznan, S. T.Yee, I. H.Ho, S. W.Ooi, N.Darman Singho, F.Aplop , Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. Journal of Nanomaterials 2014, 2014. https://doi.org/10.1155/2014/105454.
DOI: 10.1155/2014/105454
Google Scholar
[20]
R.Sarkar, P.Kumbhakar, A. K.Mitra, R. A.Ganeev, Synthesis and photoluminescence properties of silver nanowires, Curr. Appl. Phys. 2010, 10 (3), 853-857. https://doi.org/10.1038/s41528-019-0063-3.
DOI: 10.1016/j.cap.2009.10.007
Google Scholar
[21]
T. Araki, R.Mandamparambil, D. M. P.van Bragt, J.Jiu, H.Koga, J.van den Brand, T. Sekitani, J. M. Den Toonder, K. Suganuma, Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques, J. Nanotechnol 2016, 27 (45). https://doi.org/10.1088/0957-4484/27/45/45LT02.
DOI: 10.1088/0957-4484/27/45/45lt02
Google Scholar
[22]
Y.Zhang Li, X.Yuan, H.Yang, Y.Chao, S.Guo, C.Wang, One-step synthesis of silver nanowires with ultra-long length and thin diameter to make flexible transparent conductive films. Materials 2019, 12 (3), 401. https://doi.org/10.3390/ma12030401.
DOI: 10.3390/ma12030401
Google Scholar
[23]
G.C. He, H .Lu, X.Z Dong, Y .L. Zhang, J.Liu, C. Q.Xie, Z. S.Zhao, Electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer. RSC Adv. 2018, 8 (44), 24893-24899. https://doi.org/10.1039/C8RA03280G.
DOI: 10.1039/c8ra03280g
Google Scholar
[24]
P. I .Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications Mater. Sci. Eng. 2017, 223, 1-23. https://doi.org/10.1016/j.mseb.2017.05.002.
DOI: 10.1016/j.mseb.2017.05.002
Google Scholar
[25]
G. Antarnusa, Y. R. Denny, A.Suherman, I. S.Utami, A. Saefullah, The Effect of Additional Polyethylene Glycol (PEG) as Coating Fe3O4 for Magnetic Nanofluid Applications, Chem.Eng. 2021, 14(4), 335-346. https://doi.org/10.2174/2405520414666210325122511.
DOI: 10.2174/2405520414666210325122511
Google Scholar
[26]
Y.Sun, Y, Xia, Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process, Advanced Materials 2002, 14 (11), 833-837. https://doi.org/10.1002/1521-4095(20020605)14:11%3C833.
DOI: 10.1002/1521-4095(20020605)14:11<833::aid-adma833>3.0.co;2-k
Google Scholar
[27]
H. Kumar, R. Rani, Structural characterization of silver nanoparticles synthesized by micro emulsion route. Int J Eng Innov Technol 2013, 3 (3), 344-348. https://doi.org/10.18052/www.scipress.com/ILCPA.19.26.
Google Scholar
[28]
K.S. Joya, Z. Ahmad, A.T. Garcia-Esparza, H.J. de Groot, Efficient electrochemical water oxidation in neutral and near-neutral systems with a nanoscale silver-oxide catalyst. Nanoscale 2016, 8 (32), 15033-15040. https://doi.org/10.1039/C6NR03147A.
DOI: 10.1039/c6nr03147a
Google Scholar
[29]
Z.Ahmad, M. Choudhary, M.A. Mirza, Synthesis and characterization of Ag@ polycarbazole nanoparticles using different oxidants and their dispersion behavior. J., Mater Sci 2016, 34 (1), 79-84. https://doi.org/10.1515/msp-2016-0019.
DOI: 10.1515/msp-2016-0019
Google Scholar
[30]
X.Yan, J .Ma, H. Xu, C. Wang, Y. Liu, Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes, J. Phys. 2016, 49 (32), 325103. https://doi.org/10.1088/0022-3727/49/32/325103.
DOI: 10.1088/0022-3727/49/32/325103
Google Scholar
[31]
A.Chen, H. Xie, H. Wang, H. Li, , X. Li, Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals 2006, 156 (2-4), 346-350. https://doi.org/10.1016/j.synthmet.2005.12.017.
DOI: 10.1016/j.synthmet.2005.12.017
Google Scholar
[32]
Y.Zhao, M. L. Fitzgerald, Y.Tao, Z.Pan, G.Sauti, D. Xu, Y.Q, Xu, D. Li, Electrical and thermal transport through silver nanowires and their contacts: Effects of elastic stiffening. Nano Letters 2020, 20 (10), 7389-7396. https://doi.org/10.1021/acs.nanolett.0c02014.
DOI: 10.1021/acs.nanolett.0c02014
Google Scholar
[33]
P.P. AdhyapakKarandikar, K. Vijayamohanan, A. Athawale, A. Chandwadkar, Synthesis of silver nanowires inside mesoporous MCM-41 host. Mater. Lett. 2004, 58 (7-8), 1168-1171. https://doi.org/10.1016/j.matlet.2003.09.008.
DOI: 10.1016/j.matlet.2003.09.008
Google Scholar
[34]
K. E. Korte, S. E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl-or CuCl 2-mediated polyol process, J. Mater. Chem. 2008, 18 (4), 437-441. https://doi.org/10.1039/B714072J.
DOI: 10.1039/b714072j
Google Scholar
[35]
P. N. Prasad, Polymeric materials for non-linear optics and photonics. Polym. J. 1991, 32 (10), 1746-1751. https://doi.org/10.1016/0032-3861(91)90357-O.
DOI: 10.1016/0032-3861(91)90357-o
Google Scholar
[36]
L. W. ZhangZhu, Y. Huang, S.Qi, Synergetic effects of silver nanowires and graphene oxide on thermal conductivity of epoxy composites. Nanomaterials 2019, 9 (9), 1264. https://doi.org/10.3390/nano9091264.
DOI: 10.3390/nano9091264
Google Scholar