[1]
E. Sehit and Z. Altintas, Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020), Biosens Bioelectron. 159 (2020), 112165.
DOI: 10.1016/j.bios.2020.112165
Google Scholar
[2]
M. Li, L. Fang, H. Zhou, F. Wu, Y. Lu, H. Luo, Y. Zhang and B. Hu, Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor, Appl. Surf. Sci. 495 (2019), 143554.
DOI: 10.1016/j.apsusc.2019.143554
Google Scholar
[3]
G. Chang, H. Shu, K. Ji, M. Oyama, X. Liu and Y. He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose, Appl. Surf. Sci. 288 (2014), 524-529.
DOI: 10.1016/j.apsusc.2013.10.064
Google Scholar
[4]
X. Cao, K. Wang, G. Du, A.M. Asiri, Y. Ma, Q. Lu and X. Sun, One-step electrodeposition of a nickel cobalt sulfide nanosheet film as a highly sensitive nonenzymatic glucose sensor, J. Mater. Chem. B 4 (2016), 7540-7544.
DOI: 10.1039/c6tb01736c
Google Scholar
[5]
Y. Wang, J. F. Zhao, T. Yang, Y. Zhang, D. P. Tao, Y. S. Hasebe and Z. Q. Zhang, Electrochemical evaluation of sulfide mineral modified glassy carbon electrode as novel mediated glucose biosensor, J. Electroanal. Chem. 894 (2021), 115357.
DOI: 10.1016/j.jelechem.2021.115357
Google Scholar
[6]
Y.J. Yang, J. F. Zi and W. K. Li, Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode, Electrochim. Acta 115 (2014), 126-130.
DOI: 10.1016/j.electacta.2013.10.168
Google Scholar
[7]
J. Mazurkow, A. Kusior and M. Radecka, Nonenzymatic Glucose Sensors Based on Copper Sulfides: Effect of Binder-Particles Interactions in Drop-Casted Suspensions on Electrodes Electrochemical Performance, Sensors 21 (2021) 802.
DOI: 10.3390/s21030802
Google Scholar
[8]
Y. Wang, J. Wang, T. Xie, L. Zhang, L. Yang, Q. Zhu, S. Liu, Y. Peng, X. Zhang and Q. Deng, Three-dimensional flower-like Ni–Mn–S on Ti mesh: a monolithic electrochemical platform for detecting glucose, New J. Chem. 43 (2019), 7866-7873.
DOI: 10.1039/c9nj00970a
Google Scholar
[9]
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin and H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II), Chem. Soc. Rev. 48 (2019), 1004-1076.
DOI: 10.1039/c8cs00457a
Google Scholar
[10]
X. Cao and N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays, Analyst 136 (2011), 4241-4246.
DOI: 10.1039/c1an15367f
Google Scholar
[11]
N. I. Chandrasekaran, M. Harshiny and M. Matheswaran, A robust enzymeless glucose sensor based on tin nickel sulfide nanocomposite modified electrodes, Appl. Phys. A 127 (2021), 20.
DOI: 10.1007/s00339-020-04163-4
Google Scholar
[12]
W. Ren, Y. Tan, C. Q. Feng, S. Q. Wang, H. M. Wu and H. Zhang, Controlled Preparation of Co9S8 for Small Molecule Sensing Platform, J. Nanosci. Nanotechn. 18 (2018), 5582-5590.
DOI: 10.1166/jnn.2018.15389
Google Scholar
[13]
W. Wu, Y. Li, J. Jin, H. Wu, S. Wang and Q. Xia, A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose, Sensor. Actuat. B: Chem. 232 (2016), 633-641.
DOI: 10.1016/j.snb.2016.04.006
Google Scholar
[14]
W. Wu, B. Yu, H. Wu, S. Wang, Q. Xia and Y. Ding, Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose, Mater. Sci. Eng. C 70 (2017), 430-437.
DOI: 10.1016/j.msec.2016.08.084
Google Scholar
[15]
A. Meng, X. Yuan, Z. Li, K. Zhao, L. Sheng and Q. Li, Direct growth of 3D porous (Ni-Co)3S4 nanosheets arrays on rGO-PEDOT hybrid film for high performance non-enzymatic glucose sensing, Sensor. Actuat. B: Chem. 291 (2019), 9-16.
DOI: 10.1016/j.snb.2019.04.042
Google Scholar
[16]
D. Chen, H. Wang and M. Yang, A novel ball-in-ball hollow NiCo2S4 sphere based sensitive and selective nonenzymatic glucose sensor, Anal. Methods 9 (2017), 4718-4725.
DOI: 10.1039/c7ay01640a
Google Scholar
[17]
S. Liu, J. W. Zhao, L. R. Qin, G. Liu, Q. T. Zhang, and J. X. Li, Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose, J. Mater. Sci. 55 (2020), 337-346.
DOI: 10.1007/s10853-019-04059-6
Google Scholar
[18]
M. Zhao, J. W. Zhao, L. R. Qin, H. L. Jia and S. Liu, Synthesis of Ta/Ni microcavity array film for highly sensitive uric acid detection, J. Electroanal. Chem. 834 (2019), 86-93.
DOI: 10.1016/j.jelechem.2018.12.053
Google Scholar
[19]
Y. Yang, J. W. Zhao, L. R. Qin, Y. Y. Yin and L. Z. He, Synthesis of ordered bowl-like Cu-Cu2O array film for non-enzymatic hydrogen peroxide sensor, Mater. Lett. 179 (2016), 27-29.
DOI: 10.1016/j.matlet.2016.05.004
Google Scholar
[20]
Z. Dai, Y. Li, G. Duan, L. Jia and W. Cai, Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface, Acs Nano 6 (2012), 6706-6716.
DOI: 10.1021/nn3013178
Google Scholar
[21]
K. J. Babu, T. Raj kumar, D. J. Yoo, S. M. Phang and G. Gnana kumar, Electrodeposited Nickel Cobalt Sulfide Flowerlike Architectures on Disposable Cellulose Filter Paper for Enzyme-Free Glucose Sensor Applications, ACS Sustain. Chem. Eng. 6 (2018), 16982-16989.
DOI: 10.1021/acssuschemeng.8b04340
Google Scholar