[1]
A. Chatla, I.W. Almanassra, A. Abushawish, T. Laoui, H. Alawadhi, M.A. Atieh, N. Ghaffour, Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends, Desalination 558 (2023) 116615.
DOI: 10.1016/j.desal.2023.116615
Google Scholar
[2]
Y. Niu, K. Meng, S. Ming, H. Chen, X. Yu, J. Rong, X. Li, Computational simulation of self-cleaning carbon-based membranes with zeolite porous structure for desalination, Diamond and Related Materials 136 (2023) 109925.
DOI: 10.1016/j.diamond.2023.109925
Google Scholar
[3]
J. Lim, H.T. Lawless, Oral sensations from iron and copper sulfate, Physiology & Behavior 85(3) (2005) 308-313.
DOI: 10.1016/j.physbeh.2005.04.018
Google Scholar
[4]
S. Tang, X. Cao, Q. Yang, Ni -chitosan/carbon nanotube: An efficient biopolymer -inorganic catalyst for selective hydrogenation of acetylene, Heliyon (2023) e13523.
DOI: 10.1016/j.heliyon.2023.e13523
Google Scholar
[5]
A. Voutetaki, K.V. Plakas, A.I. Papadopoulos, D. Bollas, S. Parcharidis, P. Seferlis, Pilot-scale separation of lead and sulfate ions from aqueous solutions using electrodialysis: Application and parameter optimization for the battery industry, Journal of Cleaner Production 410 (2023) 137200.
DOI: 10.1016/j.jclepro.2023.137200
Google Scholar
[6]
K. Pawlak, K. Wojciechowski, Precursor ion approach for simultaneous determination of nonethoxylated and ethoxylated alkylsulfate surfactants, Journal of Chromatography A 1653 (2021) 462421.
DOI: 10.1016/j.chroma.2021.462421
Google Scholar
[7]
T. Wahyuni, The Potential and Application of Eucheuma sp. for Solid Soap: A Review, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2021, p.012048.
DOI: 10.1088/1755-1315/750/1/012048
Google Scholar
[8]
F. Eilts, S. Bauer, K. Fraser, J.S. Dordick, M.W. Wolff, R.J. Linhardt, F. Zhang, The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, Carbohydrate Polymers 299 (2023) 120167.
DOI: 10.1016/j.carbpol.2022.120167
Google Scholar
[9]
A. Afzal, F. Shahid, M. Rafique, I. Nazir, Manganese spinel ferrites-composite nanotubes impregnated thermally endured cellulose acetate membranes for superior desalination application, Asia-Pacific Journal of Chemical Engineering n/a(n/a) (2023) e2914.
DOI: 10.1002/apj.2914
Google Scholar
[10]
N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama, Removal profile of sulfate ion from mix ion solution with different type and configuration of anion exchange membrane in elctrodialysis, Journal of Water Process Engineering 20 (2017) 173-179.
DOI: 10.1016/j.jwpe.2017.10.007
Google Scholar
[11]
X. Tang, L. Hu, Y. Zhang, N. Cheng, H. Liang, J. Wang, G. Li, Sulfate and divalent cations recovery from municipal nanofiltration concentrate using two-step ion exchange membrane electrolysis, Desalination 541 (2022) 116055.
DOI: 10.1016/j.desal.2022.116055
Google Scholar
[12]
F. Guo, J. Miao, L. Xu, Q. Zhou, T. Deng, Conductive thin-film nanocomposite nanofiltration membrane comprising N-doped graphene quantum dots with relieved concentration polarization for sulfate separation from high-salinity solution, Desalination 555 (2023) 116526.
DOI: 10.1016/j.desal.2023.116526
Google Scholar
[13]
D. Li, D. Lu, J. Liu, L. Kong, X. Hu, L. Wan, W. Dou, Removal of Cl(I) from zinc sulfate electrolyte by the porous Bi2O3 rich in OVs: Efficiency and mechanism, Journal of Water Process Engineering 53 (2023) 103899.
DOI: 10.1016/j.jwpe.2023.103899
Google Scholar
[14]
S. Anitha, B. Brabu, D.J. Thiruvadigal, C. Gopalakrishnan, T.S. Natarajan, Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO, Carbohydrate Polymers 87(2) (2012) 1065-1072.
DOI: 10.1016/j.carbpol.2011.08.030
Google Scholar
[15]
M. Chu, W. Tian, J. Zhao, D. Zhang, M. Zou, Z. Lu, J. Jiang, Dual-activated biochar with a multichannel structure enhanced electrosorption capacity of capacitive deionization for sulfate removal from mining wastewater, Desalination 556 (2023) 116588.
DOI: 10.1016/j.desal.2023.116588
Google Scholar
[16]
T.-T. Zhang, Q.-B. Zhao, X.-Q. Wu, C. Xu, Y.-M. Zheng, S.-S. Yu, Enhancing sulfate reduction and hydrogen sulfide removal through gas stripping in the acidogenesis phase of a two-phase anaerobic process, Bioresource Technology (2023) 129381.
DOI: 10.1016/j.biortech.2023.129381
Google Scholar
[17]
A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology 2(1) (2016) 17-42.
DOI: 10.1039/c5ew00159e
Google Scholar
[18]
L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination 308 (2013) 15-33.
DOI: 10.1016/j.desal.2010.11.033
Google Scholar
[19]
S. Waheed, A. Ahmad, S.M. Khan, S.-e. Gul, T. Jamil, A. Islam, T. Hussain, Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan, Desalination 351 (2014) 59-69.
DOI: 10.1016/j.desal.2014.07.019
Google Scholar
[20]
A. Sabir, A. Islam, M. Shafiq, A. Shafeeq, M.T.Z. Butt, N.M. Ahmad, K. Sanaullah, T. Jamil, Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination, Desalination 368 (2015) 159-170.
DOI: 10.1016/j.desal.2014.12.041
Google Scholar
[21]
M. Pagliero, M. Khayet, C. Garcia-Payo, L. García-Fernández, Hollow fibre polymeric membranes for desalination by membrane distillation technology: A review of different morphological structures and key strategic improvements, Desalination 516 (2021) 115235.
DOI: 10.1016/j.desal.2021.115235
Google Scholar
[22]
A. Afzal, M.S. Rafique, S.S. Iqbal, S.H. Butt, U. Kalsoom, M. Rafique, Idiosyncratic cellulose acetate nanocomposite membranes: synthesis and performance control study for desalination, Environmental technology 42(9) (2021) 1336-1352.
DOI: 10.1080/09593330.2019.1668862
Google Scholar
[23]
A. Afzal, M.S. Rafique, N. Iqbal, A.A. Qaiser, A.W. Anwar, S.S. Iqbal, Synergistic effect of functionalized nanokaolin decorated MWCNTs on the performance of cellulose acetate (CA) membranes spectacular, Nanomaterials 6(4) (2016) 79.
DOI: 10.3390/nano6040079
Google Scholar
[24]
Y. Alqaheem, A.A. Alomair, Microscopy and spectroscopy techniques for characterization of polymeric membranes, Membranes 10(2) (2020) 33.
DOI: 10.3390/membranes10020033
Google Scholar
[25]
V. Chaurasia, N. Chand, S.K. Bajpai, Water Sorption Properties and Antimicrobial Action of Zinc Oxide Nanoparticles-Loaded Cellulose Acetate Films, Journal of Macromolecular Science, Part A 47(4) (2010) 309-317.
DOI: 10.1080/10601320903539207
Google Scholar
[26]
A. Afzal, W. Liaqat, F. Ahsan, Synthesis and anti-microbial investigations of CZ6 composite reinforced CA mixed matrix membranes, Physica B: Condensed Matter 652 (2023) 414642.
DOI: 10.1016/j.physb.2023.414642
Google Scholar
[27]
J. Lee, S. Jeong, Z. Liu, Progress and challenges of carbon nanotube membrane in water treatment, Critical reviews in environmental science and technology 46(11-12) (2016) 999-1046.
DOI: 10.1080/10643389.2016.1191894
Google Scholar
[28]
J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, Journal of membrane science 284(1-2) (2006) 406-415.
DOI: 10.1016/j.memsci.2006.08.013
Google Scholar
[29]
P. Daraei, S.S. Madaeni, N. Ghaemi, M.A. Khadivi, B. Astinchap, R. Moradian, Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube, Journal of membrane science 444 (2013) 184-191.
DOI: 10.1016/j.memsci.2013.05.020
Google Scholar
[30]
Y. Yang, C. Nie, Y. Deng, C. Cheng, C. He, L. Ma, C. Zhao, Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes, Rsc Advances 6(91) (2016) 88265-88276.
DOI: 10.1039/c6ra18706d
Google Scholar
[31]
K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: A review, Separation and Purification Technology 188 (2017) 399-422.
DOI: 10.1016/j.seppur.2017.07.015
Google Scholar
[32]
A. Afzal, M.S. Rafique, S.S. Iqbal, M. Rafique, Deportment of cobalt bismuth nanoferrites in Kevlar‐supported c ellulose acetate membranes for heavy metal‐salts rejection profile, Journal of Applied Polymer Science (2022) e52962.
DOI: 10.1002/app.52962
Google Scholar
[33]
M.S. Dahiya, V.K. Tomer, S. Duhan, Metal–ferrite nanocomposites for targeted drug delivery, Applications of Nanocomposite Materials in Drug Delivery2018, pp.737-760.
DOI: 10.1016/b978-0-12-813741-3.00032-7
Google Scholar
[34]
S.M. Hosseini, S.H. Amini, A.R. Khodabakhshi, E. Bagheripour, B. Van der Bruggen, Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water, Journal of the Taiwan Institute of Chemical Engineers 82 (2018) 169-178.
DOI: 10.1016/j.jtice.2017.11.017
Google Scholar
[35]
W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Research 121 (2017) 302-310.
DOI: 10.1016/j.watres.2017.05.046
Google Scholar
[36]
M.S. Ata, R. Poon, A.M. Syed, J. Milne, I. Zhitomirsky, New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes, Carbon 130 (2018) 584-598.
DOI: 10.1016/j.carbon.2018.01.066
Google Scholar
[37]
P.K. Tarafdar, B.R. Lentz, Synaptobrevin Trans-Membrane Domain forms a Complex that Enhances the Rate of "Stalk" and Pore Formation in PEG-Mediated Vesicle Fusion, Biophysical Journal 102(3, Supplement 1) (2012) 500a.
DOI: 10.1016/j.bpj.2011.11.2736
Google Scholar
[38]
Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, Journal of Membrane Science 279(1) (2006) 230-237.
DOI: 10.1016/j.memsci.2005.12.009
Google Scholar
[39]
C. Bărdacă Urducea, A.C. Nechifor, I.A. Dimulescu, O. Oprea, G. Nechifor, E.E. Totu, I. Isildak, P.C. Albu, S.G. Bungău, Control of nanostructured polysulfone membrane preparation by phase inversion method, Nanomaterials 10(12) (2020) 2349.
DOI: 10.3390/nano10122349
Google Scholar
[40]
B. Khan, W. Zhan, C. Lina, Cellulose acetate (CA) hybrid membrane prepared by phase inversion method combined with chemical reaction with enhanced permeability and good anti-fouling property, Journal of Applied Polymer Science 137(47) (2020) 49556.
DOI: 10.1002/app.49556
Google Scholar
[41]
D. Stoffel, E. Rigo, N. Derlon, C. Staaks, M. Heijnen, E. Morgenroth, C. Jacquin, Low maintenance gravity-driven membrane filtration using hollow fibers: Effect of reducing space for biofilm growth and control strategies on permeate flux, Science of The Total Environment 811 (2022) 152307.
DOI: 10.1016/j.scitotenv.2021.152307
Google Scholar
[42]
K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties, Journal of Nanoscience and Nanoengineering 1(3) (2015) 178-182.
Google Scholar
[43]
S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Designing regenerable zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater, Environmental Research (2022) 114500.
DOI: 10.1016/j.envres.2022.114500
Google Scholar
[44]
J. Bosco Franklin, G. Theophil Anand, G. Merline Sujitha, S. John Sundaram, A. Dhayal Raj, K. Kaviyarasu, Synthesis and characterization of zinc ferrite nanoparticles using prunus dulcis (almond gum) for antibacterial applications, Materials Today: Proceedings (2022).
DOI: 10.1016/j.matpr.2022.08.429
Google Scholar
[45]
M. Ali, M. Zafar, T. Jamil, M.T.Z. Butt, Influence of glycol additives on the structure and performance of cellulose acetate/zinc oxide blend membranes, Desalination 270(1-3) (2011) 98-104.
DOI: 10.1016/j.desal.2010.11.027
Google Scholar
[46]
W. Chen, Y. Su, L. Zheng, L. Wang, Z. Jiang, The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes, Journal of Membrane Science 337(1-2) (2009) 98-105.
DOI: 10.1016/j.memsci.2009.03.029
Google Scholar
[47]
M. Zafar, M. Ali, S.M. Khan, T. Jamil, M.T.Z. Butt, Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures, Desalination 285 (2012) 359-365.
DOI: 10.1016/j.desal.2011.10.027
Google Scholar
[48]
H. Yu, Y. Jin, Z. Li, F. Peng, H. Wang, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, Journal of Solid State Chemistry 181(3) (2008) 432-438.
DOI: 10.1016/j.jssc.2007.12.017
Google Scholar
[49]
M.C. Prete, C.R.T. Tarley, Bisphenol A adsorption in aqueous medium by investigating organic and inorganic components of hybrid polymer (polyvinylpyridine/SiO2/APTMS), Chemical Engineering Journal 367 (2019) 102-114.
DOI: 10.1016/j.cej.2019.02.133
Google Scholar
[50]
M.J. Palimi, M. Rostami, M. Mahdavian, B. Ramezanzadeh, Surface modification of Cr2O3 nanoparticles with 3-amino propyl trimethoxy silane (APTMS). Part 1: Studying the mechanical properties of polyurethane/Cr2O3 nanocomposites, Progress in Organic Coatings 77(11) (2014) 1663-1673.
DOI: 10.1016/j.porgcoat.2014.05.010
Google Scholar
[51]
M. Oprea, A.M. Pandele, A.I. Nicoara, A. Nicolescu, C. Deleanu, S.I. Voicu, Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration, International Journal of Biological Macromolecules 230 (2023) 123162.
DOI: 10.1016/j.ijbiomac.2023.123162
Google Scholar
[52]
N. Alahmadi, M.A. Hussein, Hybrid nanocomposite membranes containing cellulose acetate @ CuO/ZnO for biological interest, Journal of Materials Research and Technology 21 (2022) 4409-4418.
DOI: 10.1016/j.jmrt.2022.11.055
Google Scholar
[53]
S. Kanagesan, S.B. Aziz, M. Hashim, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B. Purna Chandra Rao, Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1), Molecules 21(3) (2016) 312.
DOI: 10.3390/molecules21030312
Google Scholar
[54]
N. Gowriboy, R. Kalaivizhi, N.J. Kaleekkal, M.R. Ganesh, K.A. Aswathy, Fabrication and characterization of polymer nanocomposites membrane (Cu-MOF@CA/PES) for water treatment, Journal of Environmental Chemical Engineering 10(6) (2022) 108668.
DOI: 10.1016/j.jece.2022.108668
Google Scholar
[55]
J.L. Gurav, I.-K. Jung, H.-H. Park, E.S. Kang, D.Y. Nadargi, Silica Aerogel: Synthesis and Applications, Journal of Nanomaterials 2010 (2010) 1-11.
DOI: 10.1155/2010/409310
Google Scholar
[56]
X. Zhang, W. Yang, Q. Wang, F. Huang, C. Gao, L. Xue, Tuning the nano-porosity and nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial polymerization, Journal of Membrane Science 640 (2021) 119780.
DOI: 10.1016/j.memsci.2021.119780
Google Scholar
[57]
S.C.N. Tang, L. Birnhack, P. Nativ, O. Lahav, Highly-selective separation of divalent ions from seawater and seawater RO retentate, Separation and Purification Technology 175 (2017) 460-468.
DOI: 10.1016/j.seppur.2016.10.030
Google Scholar
[58]
A. V. B, S. Mohanty, S.K. Nayak, Preparation and characterization of porous polyethersulfone (PES) membranes with improved biocompatibility by blending sulfonated polyethersulfone (SPES) and cellulose acetate (CA) – A comparative study, Materials Today Communications 25 (2020) 101544.
DOI: 10.1016/j.mtcomm.2020.101544
Google Scholar
[59]
H.T. Le, D.T. Ngo, R.S. Kalubarme, G. Cao, C.N. Park, C.J. Park, Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries, ACS Appl Mater Interfaces 8(32) (2016) 20710-9.
DOI: 10.1021/acsami.6b05301
Google Scholar
[60]
Z. Fatima, A. Afzal, S. Arshad, Tailoring Zeolite-Composite (ZC) Impregnated Thermally Endured Nonporous Cellulose Acetate Membranes for Potential Gas Separation and Antibacterial Performances, Journal of Nano Research 78 (2023) 43-58.
DOI: 10.4028/p-c80drd
Google Scholar
[61]
G. Arthanareeswaran, T. Sriyamunadevi, M. Raajenthiren, Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I, Separation and Purification Technology 64(1) (2008) 38-47.
DOI: 10.1016/j.seppur.2008.08.010
Google Scholar
[62]
H. Kamal, F.M. Abd-Elrahim, S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation, Journal of Radiation Research and Applied Sciences 7(2) (2019) 146-153.
DOI: 10.1016/j.jrras.2014.01.003
Google Scholar
[63]
X.-Y. Ma, W.-D. Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane, Polymer Degradation and Stability 94(7) (2009) 1103-1109.
DOI: 10.1016/j.polymdegradstab.2009.03.024
Google Scholar
[64]
C. Boo, Y. Wang, I. Zucker, Y. Choo, C.O. Osuji, M. Elimelech, High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery, Environ Sci Technol 52(13) (2018) 7279-7288.
DOI: 10.1021/acs.est.8b01040
Google Scholar
[65]
R. Baghel, S. Upadhyaya, K. Singh, S.P. Chaurasia, A.B. Gupta, R.K. Dohare, A review on membrane applications and transport mechanisms in vacuum membrane distillation, Reviews in Chemical Engineering 34(1) (2017) 73-106.
DOI: 10.1515/revce-2016-0050
Google Scholar
[66]
F.S. Al-Mubaddel, H.S. AlRomaih, M.R. Karim, M. Luqman, M.M. Al-Rashed, A.S. Al-Mutairi, Improved salt rejection, hydrophilicity and mechanical properties of novel thermoplastic polymer/chitosan nanofibre membranes, Journal of Engineered Fibers and Fabrics 15 (2020) 1558925020923174.
DOI: 10.1177/1558925020923174
Google Scholar
[67]
J.Y. Park, S. Lim, K. Park, A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater, Journal of Nanoparticle Research 15(4) (2013).
DOI: 10.1007/s11051-013-1548-y
Google Scholar
[68]
W. Chen, S. Chen, T. Liang, Q. Zhang, Z. Fan, H. Yin, K.W. Huang, X. Zhang, Z. Lai, P. Sheng, High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes, Nat Nanotechnol 13(4) (2018) 345-350.
DOI: 10.1038/s41565-018-0067-5
Google Scholar
[69]
F. Zhang, Y. Li, H. Cai, Q. Liu, G. Tong, Processing nanocellulose foam into high-performance membranes for harvesting energy from nature, Carbohydrate Polymers 241 (2020) 116253.
DOI: 10.1016/j.carbpol.2020.116253
Google Scholar
[70]
M. Mariano, S.F. Souza, A.C. Borges, D.M. do Nascimento, J.S. Bernardes, Tailoring strength of nanocellulose foams by electrostatic complexation, Carbohydrate Polymers 256 (2021) 117547.
DOI: 10.1016/j.carbpol.2020.117547
Google Scholar
[71]
M. Ağtaş, T. Ormancı-Acar, B. Keskin, T. Türken, İ. Koyuncu, Nanofiltration membranes for salt and dye filtration: effect of membrane properties on performances, Water Science and Technology 83(9) (2021) 2146-2159.
DOI: 10.2166/wst.2021.125
Google Scholar