Ferrite-SCNTs Composite (ZFS) Embedded Nanostructured Cellulose Acetate Membranes - A Promising Sulphate Salts Rejecting Tool. Synthesis and Characterizations

Article Preview

Abstract:

Tailoring diverse characteristics of nanostructured cellulose acetate (CA) membranes by incorporating nanocomposite-tubes ZFS composed of zinc ferrites decorated over single walled carbon nanotubes (SCNTs) for desalination application, is presented in the current research. In situ coprecipitated route is adopted to synthesize ZFS composite filler that imparts morphological, structural, and thermal modifications in CA membranes. Phase inversion via immersion precipitation route has been adopted to synthesis mixed matrix membranes. Microstructural analysis divulges pore size tuning from 1µm to 5nm by increasing loading content of infused filler (ZFS) from 0 to 4wt.%. XRD and FTIR examinations verified the existence and linkages of impregnated composite nanotubes in the modified membranes. Increasing ZFS contents 1-4wt.% enhanced the thermal stability of host membranes up to 17°C in comparison to pristine CA membranes as proclaimed by thermal degrative investigations. Membranes’ performance is evaluated by deionized water flux and sulphate salts (aluminum and copper) rejection capabilities. The prepared membranes are highly effective in salts removal application as evident from 98% of aluminum sulphate rejection that emanates from micro to nano porosity transformation after increasing filler composite into the membrane matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-36

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Chatla, I.W. Almanassra, A. Abushawish, T. Laoui, H. Alawadhi, M.A. Atieh, N. Ghaffour, Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends, Desalination 558 (2023) 116615.

DOI: 10.1016/j.desal.2023.116615

Google Scholar

[2] Y. Niu, K. Meng, S. Ming, H. Chen, X. Yu, J. Rong, X. Li, Computational simulation of self-cleaning carbon-based membranes with zeolite porous structure for desalination, Diamond and Related Materials 136 (2023) 109925.

DOI: 10.1016/j.diamond.2023.109925

Google Scholar

[3] J. Lim, H.T. Lawless, Oral sensations from iron and copper sulfate, Physiology & Behavior 85(3) (2005) 308-313.

DOI: 10.1016/j.physbeh.2005.04.018

Google Scholar

[4] S. Tang, X. Cao, Q. Yang, Ni -chitosan/carbon nanotube: An efficient biopolymer -inorganic catalyst for selective hydrogenation of acetylene, Heliyon (2023) e13523.

DOI: 10.1016/j.heliyon.2023.e13523

Google Scholar

[5] A. Voutetaki, K.V. Plakas, A.I. Papadopoulos, D. Bollas, S. Parcharidis, P. Seferlis, Pilot-scale separation of lead and sulfate ions from aqueous solutions using electrodialysis: Application and parameter optimization for the battery industry, Journal of Cleaner Production 410 (2023) 137200.

DOI: 10.1016/j.jclepro.2023.137200

Google Scholar

[6] K. Pawlak, K. Wojciechowski, Precursor ion approach for simultaneous determination of nonethoxylated and ethoxylated alkylsulfate surfactants, Journal of Chromatography A 1653 (2021) 462421.

DOI: 10.1016/j.chroma.2021.462421

Google Scholar

[7] T. Wahyuni, The Potential and Application of Eucheuma sp. for Solid Soap: A Review, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2021, p.012048.

DOI: 10.1088/1755-1315/750/1/012048

Google Scholar

[8] F. Eilts, S. Bauer, K. Fraser, J.S. Dordick, M.W. Wolff, R.J. Linhardt, F. Zhang, The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics, Carbohydrate Polymers 299 (2023) 120167.

DOI: 10.1016/j.carbpol.2022.120167

Google Scholar

[9] A. Afzal, F. Shahid, M. Rafique, I. Nazir, Manganese spinel ferrites-composite nanotubes impregnated thermally endured cellulose acetate membranes for superior desalination application, Asia-Pacific Journal of Chemical Engineering n/a(n/a) (2023) e2914.

DOI: 10.1002/apj.2914

Google Scholar

[10] N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama, Removal profile of sulfate ion from mix ion solution with different type and configuration of anion exchange membrane in elctrodialysis, Journal of Water Process Engineering 20 (2017) 173-179.

DOI: 10.1016/j.jwpe.2017.10.007

Google Scholar

[11] X. Tang, L. Hu, Y. Zhang, N. Cheng, H. Liang, J. Wang, G. Li, Sulfate and divalent cations recovery from municipal nanofiltration concentrate using two-step ion exchange membrane electrolysis, Desalination 541 (2022) 116055.

DOI: 10.1016/j.desal.2022.116055

Google Scholar

[12] F. Guo, J. Miao, L. Xu, Q. Zhou, T. Deng, Conductive thin-film nanocomposite nanofiltration membrane comprising N-doped graphene quantum dots with relieved concentration polarization for sulfate separation from high-salinity solution, Desalination 555 (2023) 116526.

DOI: 10.1016/j.desal.2023.116526

Google Scholar

[13] D. Li, D. Lu, J. Liu, L. Kong, X. Hu, L. Wan, W. Dou, Removal of Cl(I) from zinc sulfate electrolyte by the porous Bi2O3 rich in OVs: Efficiency and mechanism, Journal of Water Process Engineering 53 (2023) 103899.

DOI: 10.1016/j.jwpe.2023.103899

Google Scholar

[14] S. Anitha, B. Brabu, D.J. Thiruvadigal, C. Gopalakrishnan, T.S. Natarajan, Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO, Carbohydrate Polymers 87(2) (2012) 1065-1072.

DOI: 10.1016/j.carbpol.2011.08.030

Google Scholar

[15] M. Chu, W. Tian, J. Zhao, D. Zhang, M. Zou, Z. Lu, J. Jiang, Dual-activated biochar with a multichannel structure enhanced electrosorption capacity of capacitive deionization for sulfate removal from mining wastewater, Desalination 556 (2023) 116588.

DOI: 10.1016/j.desal.2023.116588

Google Scholar

[16] T.-T. Zhang, Q.-B. Zhao, X.-Q. Wu, C. Xu, Y.-M. Zheng, S.-S. Yu, Enhancing sulfate reduction and hydrogen sulfide removal through gas stripping in the acidogenesis phase of a two-phase anaerobic process, Bioresource Technology (2023) 129381.

DOI: 10.1016/j.biortech.2023.129381

Google Scholar

[17] A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology 2(1) (2016) 17-42.

DOI: 10.1039/c5ew00159e

Google Scholar

[18] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination 308 (2013) 15-33.

DOI: 10.1016/j.desal.2010.11.033

Google Scholar

[19] S. Waheed, A. Ahmad, S.M. Khan, S.-e. Gul, T. Jamil, A. Islam, T. Hussain, Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan, Desalination 351 (2014) 59-69.

DOI: 10.1016/j.desal.2014.07.019

Google Scholar

[20] A. Sabir, A. Islam, M. Shafiq, A. Shafeeq, M.T.Z. Butt, N.M. Ahmad, K. Sanaullah, T. Jamil, Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination, Desalination 368 (2015) 159-170.

DOI: 10.1016/j.desal.2014.12.041

Google Scholar

[21] M. Pagliero, M. Khayet, C. Garcia-Payo, L. García-Fernández, Hollow fibre polymeric membranes for desalination by membrane distillation technology: A review of different morphological structures and key strategic improvements, Desalination 516 (2021) 115235.

DOI: 10.1016/j.desal.2021.115235

Google Scholar

[22] A. Afzal, M.S. Rafique, S.S. Iqbal, S.H. Butt, U. Kalsoom, M. Rafique, Idiosyncratic cellulose acetate nanocomposite membranes: synthesis and performance control study for desalination, Environmental technology 42(9) (2021) 1336-1352.

DOI: 10.1080/09593330.2019.1668862

Google Scholar

[23] A. Afzal, M.S. Rafique, N. Iqbal, A.A. Qaiser, A.W. Anwar, S.S. Iqbal, Synergistic effect of functionalized nanokaolin decorated MWCNTs on the performance of cellulose acetate (CA) membranes spectacular, Nanomaterials 6(4) (2016) 79.

DOI: 10.3390/nano6040079

Google Scholar

[24] Y. Alqaheem, A.A. Alomair, Microscopy and spectroscopy techniques for characterization of polymeric membranes, Membranes 10(2) (2020) 33.

DOI: 10.3390/membranes10020033

Google Scholar

[25] V. Chaurasia, N. Chand, S.K. Bajpai, Water Sorption Properties and Antimicrobial Action of Zinc Oxide Nanoparticles-Loaded Cellulose Acetate Films, Journal of Macromolecular Science, Part A 47(4) (2010) 309-317.

DOI: 10.1080/10601320903539207

Google Scholar

[26] A. Afzal, W. Liaqat, F. Ahsan, Synthesis and anti-microbial investigations of CZ6 composite reinforced CA mixed matrix membranes, Physica B: Condensed Matter 652 (2023) 414642.

DOI: 10.1016/j.physb.2023.414642

Google Scholar

[27] J. Lee, S. Jeong, Z. Liu, Progress and challenges of carbon nanotube membrane in water treatment, Critical reviews in environmental science and technology 46(11-12) (2016) 999-1046.

DOI: 10.1080/10643389.2016.1191894

Google Scholar

[28] J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, Journal of membrane science 284(1-2) (2006) 406-415.

DOI: 10.1016/j.memsci.2006.08.013

Google Scholar

[29] P. Daraei, S.S. Madaeni, N. Ghaemi, M.A. Khadivi, B. Astinchap, R. Moradian, Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube, Journal of membrane science 444 (2013) 184-191.

DOI: 10.1016/j.memsci.2013.05.020

Google Scholar

[30] Y. Yang, C. Nie, Y. Deng, C. Cheng, C. He, L. Ma, C. Zhao, Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes, Rsc Advances 6(91) (2016) 88265-88276.

DOI: 10.1039/c6ra18706d

Google Scholar

[31] K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: A review, Separation and Purification Technology 188 (2017) 399-422.

DOI: 10.1016/j.seppur.2017.07.015

Google Scholar

[32] A. Afzal, M.S. Rafique, S.S. Iqbal, M. Rafique, Deportment of cobalt bismuth nanoferrites in Kevlar‐supported c ellulose acetate membranes for heavy metal‐salts rejection profile, Journal of Applied Polymer Science (2022) e52962.

DOI: 10.1002/app.52962

Google Scholar

[33] M.S. Dahiya, V.K. Tomer, S. Duhan, Metal–ferrite nanocomposites for targeted drug delivery, Applications of Nanocomposite Materials in Drug Delivery2018, pp.737-760.

DOI: 10.1016/b978-0-12-813741-3.00032-7

Google Scholar

[34] S.M. Hosseini, S.H. Amini, A.R. Khodabakhshi, E. Bagheripour, B. Van der Bruggen, Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water, Journal of the Taiwan Institute of Chemical Engineers 82 (2018) 169-178.

DOI: 10.1016/j.jtice.2017.11.017

Google Scholar

[35] W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Research 121 (2017) 302-310.

DOI: 10.1016/j.watres.2017.05.046

Google Scholar

[36] M.S. Ata, R. Poon, A.M. Syed, J. Milne, I. Zhitomirsky, New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes, Carbon 130 (2018) 584-598.

DOI: 10.1016/j.carbon.2018.01.066

Google Scholar

[37] P.K. Tarafdar, B.R. Lentz, Synaptobrevin Trans-Membrane Domain forms a Complex that Enhances the Rate of "Stalk" and Pore Formation in PEG-Mediated Vesicle Fusion, Biophysical Journal 102(3, Supplement 1) (2012) 500a.

DOI: 10.1016/j.bpj.2011.11.2736

Google Scholar

[38] Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, Journal of Membrane Science 279(1) (2006) 230-237.

DOI: 10.1016/j.memsci.2005.12.009

Google Scholar

[39] C. Bărdacă Urducea, A.C. Nechifor, I.A. Dimulescu, O. Oprea, G. Nechifor, E.E. Totu, I. Isildak, P.C. Albu, S.G. Bungău, Control of nanostructured polysulfone membrane preparation by phase inversion method, Nanomaterials 10(12) (2020) 2349.

DOI: 10.3390/nano10122349

Google Scholar

[40] B. Khan, W. Zhan, C. Lina, Cellulose acetate (CA) hybrid membrane prepared by phase inversion method combined with chemical reaction with enhanced permeability and good anti-fouling property, Journal of Applied Polymer Science 137(47) (2020) 49556.

DOI: 10.1002/app.49556

Google Scholar

[41] D. Stoffel, E. Rigo, N. Derlon, C. Staaks, M. Heijnen, E. Morgenroth, C. Jacquin, Low maintenance gravity-driven membrane filtration using hollow fibers: Effect of reducing space for biofilm growth and control strategies on permeate flux, Science of The Total Environment 811 (2022) 152307.

DOI: 10.1016/j.scitotenv.2021.152307

Google Scholar

[42] K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties, Journal of Nanoscience and Nanoengineering 1(3) (2015) 178-182.

Google Scholar

[43] S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Designing regenerable zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater, Environmental Research (2022) 114500.

DOI: 10.1016/j.envres.2022.114500

Google Scholar

[44] J. Bosco Franklin, G. Theophil Anand, G. Merline Sujitha, S. John Sundaram, A. Dhayal Raj, K. Kaviyarasu, Synthesis and characterization of zinc ferrite nanoparticles using prunus dulcis (almond gum) for antibacterial applications, Materials Today: Proceedings (2022).

DOI: 10.1016/j.matpr.2022.08.429

Google Scholar

[45] M. Ali, M. Zafar, T. Jamil, M.T.Z. Butt, Influence of glycol additives on the structure and performance of cellulose acetate/zinc oxide blend membranes, Desalination 270(1-3) (2011) 98-104.

DOI: 10.1016/j.desal.2010.11.027

Google Scholar

[46] W. Chen, Y. Su, L. Zheng, L. Wang, Z. Jiang, The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes, Journal of Membrane Science 337(1-2) (2009) 98-105.

DOI: 10.1016/j.memsci.2009.03.029

Google Scholar

[47] M. Zafar, M. Ali, S.M. Khan, T. Jamil, M.T.Z. Butt, Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures, Desalination 285 (2012) 359-365.

DOI: 10.1016/j.desal.2011.10.027

Google Scholar

[48] H. Yu, Y. Jin, Z. Li, F. Peng, H. Wang, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, Journal of Solid State Chemistry 181(3) (2008) 432-438.

DOI: 10.1016/j.jssc.2007.12.017

Google Scholar

[49] M.C. Prete, C.R.T. Tarley, Bisphenol A adsorption in aqueous medium by investigating organic and inorganic components of hybrid polymer (polyvinylpyridine/SiO2/APTMS), Chemical Engineering Journal 367 (2019) 102-114.

DOI: 10.1016/j.cej.2019.02.133

Google Scholar

[50] M.J. Palimi, M. Rostami, M. Mahdavian, B. Ramezanzadeh, Surface modification of Cr2O3 nanoparticles with 3-amino propyl trimethoxy silane (APTMS). Part 1: Studying the mechanical properties of polyurethane/Cr2O3 nanocomposites, Progress in Organic Coatings 77(11) (2014) 1663-1673.

DOI: 10.1016/j.porgcoat.2014.05.010

Google Scholar

[51] M. Oprea, A.M. Pandele, A.I. Nicoara, A. Nicolescu, C. Deleanu, S.I. Voicu, Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration, International Journal of Biological Macromolecules 230 (2023) 123162.

DOI: 10.1016/j.ijbiomac.2023.123162

Google Scholar

[52] N. Alahmadi, M.A. Hussein, Hybrid nanocomposite membranes containing cellulose acetate @ CuO/ZnO for biological interest, Journal of Materials Research and Technology 21 (2022) 4409-4418.

DOI: 10.1016/j.jmrt.2022.11.055

Google Scholar

[53] S. Kanagesan, S.B. Aziz, M. Hashim, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B. Purna Chandra Rao, Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1), Molecules 21(3) (2016) 312.

DOI: 10.3390/molecules21030312

Google Scholar

[54] N. Gowriboy, R. Kalaivizhi, N.J. Kaleekkal, M.R. Ganesh, K.A. Aswathy, Fabrication and characterization of polymer nanocomposites membrane (Cu-MOF@CA/PES) for water treatment, Journal of Environmental Chemical Engineering 10(6) (2022) 108668.

DOI: 10.1016/j.jece.2022.108668

Google Scholar

[55] J.L. Gurav, I.-K. Jung, H.-H. Park, E.S. Kang, D.Y. Nadargi, Silica Aerogel: Synthesis and Applications, Journal of Nanomaterials 2010 (2010) 1-11.

DOI: 10.1155/2010/409310

Google Scholar

[56] X. Zhang, W. Yang, Q. Wang, F. Huang, C. Gao, L. Xue, Tuning the nano-porosity and nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial polymerization, Journal of Membrane Science 640 (2021) 119780.

DOI: 10.1016/j.memsci.2021.119780

Google Scholar

[57] S.C.N. Tang, L. Birnhack, P. Nativ, O. Lahav, Highly-selective separation of divalent ions from seawater and seawater RO retentate, Separation and Purification Technology 175 (2017) 460-468.

DOI: 10.1016/j.seppur.2016.10.030

Google Scholar

[58] A. V. B, S. Mohanty, S.K. Nayak, Preparation and characterization of porous polyethersulfone (PES) membranes with improved biocompatibility by blending sulfonated polyethersulfone (SPES) and cellulose acetate (CA) – A comparative study, Materials Today Communications 25 (2020) 101544.

DOI: 10.1016/j.mtcomm.2020.101544

Google Scholar

[59] H.T. Le, D.T. Ngo, R.S. Kalubarme, G. Cao, C.N. Park, C.J. Park, Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries, ACS Appl Mater Interfaces 8(32) (2016) 20710-9.

DOI: 10.1021/acsami.6b05301

Google Scholar

[60] Z. Fatima, A. Afzal, S. Arshad, Tailoring Zeolite-Composite (ZC) Impregnated Thermally Endured Nonporous Cellulose Acetate Membranes for Potential Gas Separation and Antibacterial Performances, Journal of Nano Research 78 (2023) 43-58.

DOI: 10.4028/p-c80drd

Google Scholar

[61] G. Arthanareeswaran, T. Sriyamunadevi, M. Raajenthiren, Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I, Separation and Purification Technology 64(1) (2008) 38-47.

DOI: 10.1016/j.seppur.2008.08.010

Google Scholar

[62] H. Kamal, F.M. Abd-Elrahim, S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation, Journal of Radiation Research and Applied Sciences 7(2) (2019) 146-153.

DOI: 10.1016/j.jrras.2014.01.003

Google Scholar

[63] X.-Y. Ma, W.-D. Zhang, Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane, Polymer Degradation and Stability 94(7) (2009) 1103-1109.

DOI: 10.1016/j.polymdegradstab.2009.03.024

Google Scholar

[64] C. Boo, Y. Wang, I. Zucker, Y. Choo, C.O. Osuji, M. Elimelech, High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery, Environ Sci Technol 52(13) (2018) 7279-7288.

DOI: 10.1021/acs.est.8b01040

Google Scholar

[65] R. Baghel, S. Upadhyaya, K. Singh, S.P. Chaurasia, A.B. Gupta, R.K. Dohare, A review on membrane applications and transport mechanisms in vacuum membrane distillation, Reviews in Chemical Engineering 34(1) (2017) 73-106.

DOI: 10.1515/revce-2016-0050

Google Scholar

[66] F.S. Al-Mubaddel, H.S. AlRomaih, M.R. Karim, M. Luqman, M.M. Al-Rashed, A.S. Al-Mutairi, Improved salt rejection, hydrophilicity and mechanical properties of novel thermoplastic polymer/chitosan nanofibre membranes, Journal of Engineered Fibers and Fabrics 15 (2020) 1558925020923174.

DOI: 10.1177/1558925020923174

Google Scholar

[67] J.Y. Park, S. Lim, K. Park, A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater, Journal of Nanoparticle Research 15(4) (2013).

DOI: 10.1007/s11051-013-1548-y

Google Scholar

[68] W. Chen, S. Chen, T. Liang, Q. Zhang, Z. Fan, H. Yin, K.W. Huang, X. Zhang, Z. Lai, P. Sheng, High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes, Nat Nanotechnol 13(4) (2018) 345-350.

DOI: 10.1038/s41565-018-0067-5

Google Scholar

[69] F. Zhang, Y. Li, H. Cai, Q. Liu, G. Tong, Processing nanocellulose foam into high-performance membranes for harvesting energy from nature, Carbohydrate Polymers 241 (2020) 116253.

DOI: 10.1016/j.carbpol.2020.116253

Google Scholar

[70] M. Mariano, S.F. Souza, A.C. Borges, D.M. do Nascimento, J.S. Bernardes, Tailoring strength of nanocellulose foams by electrostatic complexation, Carbohydrate Polymers 256 (2021) 117547.

DOI: 10.1016/j.carbpol.2020.117547

Google Scholar

[71] M. Ağtaş, T. Ormancı-Acar, B. Keskin, T. Türken, İ. Koyuncu, Nanofiltration membranes for salt and dye filtration: effect of membrane properties on performances, Water Science and Technology 83(9) (2021) 2146-2159.

DOI: 10.2166/wst.2021.125

Google Scholar