[1]
T. Dalton, D. Jin, Extent and frequency of vessel oil spills in US marine protected areas, Mar. Pollut. Bull, 60 (2010) 1939-1945.
DOI: 10.1016/j.marpolbul.2010.07.036
Google Scholar
[2]
R. Biela, L. Sopikova, Efficiency of sorption materials on the removal of lead from water, Appl. Ecol. Env. Res, 15 (2017)1527-1536.
DOI: 10.15666/aeer/1503_15271536
Google Scholar
[3]
G. Zhong-Zheng, Q. Na, C. Wen-Jie, Z. Hui, Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes, Arab. J. Chem, 15 (2022) 104105.
DOI: 10.1016/j.arabjc.2022.104105
Google Scholar
[4]
L. Ting-Ting, Z. Xiao, W. Zhike, R. Hai-Tao, P. Hao-Kai, S. Bing-Chiuan, L. Ching-Wen, L. Jia-Horng, Study on melamine/bentonite polyurethane porous composite foam: Pb2+ adsorption and mechanical properties, Polym. Advan. Technol, 32 (2021) 2061-2071.
DOI: 10.1002/pat.5235
Google Scholar
[5]
L. Yi, M. Yi, Q. Xiumei, Z. Feng, W. Hongquan, Z. Sen, Y. Chunjie, Novel porous phosphoric acid-based geopolymer foams for adsorption of Pb(II), Cd(II) and Ni(II) mixtures: Behavior and mechanism, Ceram. Int, 49 (2023) 7030-7039.
DOI: 10.1016/j.ceramint.2022.10.164
Google Scholar
[6]
L. Ting-Ting, L. Shuxia, Z. Xiao, S. Bing-Chiuan, P. Hao-Kai, R. Hai-Tao, M. Chun-Hui, L. Ching-Wen, L. Jia-Horng, Study on fabric/polyurethane high strength porous composite foam: Pb2+ adsorption properties and mechanical properties, Polym. Composite, 42 (2021) 6322-6331.
DOI: 10.1002/pc.26300
Google Scholar
[7]
P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization, J. Mater. Chem. A, 5 (2017) 14748-14757.
DOI: 10.1039/c7ta03515b
Google Scholar
[8]
M. Favaro, S. Agnoli, M. Cattelan, A. Moretto, C. Durante, S. Leonardi, J. Kunze-Liebhauser, O. Schneider, A. Gennaro, G. Granozzi, Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials, Carbon, 77 (2014) 405-415.
DOI: 10.1016/j.carbon.2014.05.044
Google Scholar
[9]
J. Chen, S. Chen, G. Lai, Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture, Nanoscale Res. Lett, 7 (2012) 170.
DOI: 10.1186/1556-276x-7-170
Google Scholar
[10]
Y. Zhao, K. Pan, S. Wei, B. Zhang, Template-free hydrothermal synthesis of 3D hollow aggregate spherical structure WO3 nano-plates and photocatalytic properties, Mater. Res. Bull, 101 (2018) 280-286.
DOI: 10.1016/j.materresbull.2018.01.049
Google Scholar
[11]
S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures, ACS Appl. Mater. Inter, 9 (2017) 20833-20842.
DOI: 10.1021/acsami.7b04095
Google Scholar
[12]
S. Ye, J. Feng, P. Wu, Highly elastic graphene oxide–epoxy composite aerogels via simple freeze-drying and subsequent routine curing, J. Mater. Chem. A, 1 (2013) 3495-3502.
DOI: 10.1039/c2ta01142e
Google Scholar
[13]
F. Mohandes, M. Salavati-Niasari, Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite, RSC Adv, 4 (2014) 25993-26001.
DOI: 10.1039/c4ra03534h
Google Scholar
[14]
L. Qian, H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials, J. Chem. Technol. Biot, 86 (2010) 172-184.
DOI: 10.1002/jctb.2495
Google Scholar
[15]
W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility, Nano Res, 7 (2014) 1731–1737.
DOI: 10.1007/s12274-014-0532-x
Google Scholar
[16]
H. Geng, Y. Xu, L. Zheng, H. Gong, L. Dai, X. Dai, An overview of removing heavy metals from sewage sludge: Achievements and perspectives, Environ. Pollut, 266 (2020) 115375.
DOI: 10.1016/j.envpol.2020.115375
Google Scholar
[17]
B. Thomas, S. Geng, M. Sain, K. Oksman, Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications, Nanomaterials, 11 (2021) 653.
DOI: 10.3390/nano11030653
Google Scholar
[18]
S. Agarwal, A.P. Singh, Performance evaluation of textile wastewater treatment techniques using sustainability index: An integrated fuzzy approach of assessment, J. Clean. Prod. 337 (2022) 130384.
DOI: 10.1016/j.jclepro.2022.130384
Google Scholar
[19]
D. Nowak, E. Jakubczyk, The Freeze-Drying of Foods-The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials, Foods, 9 (2020) 1488.
DOI: 10.3390/foods9101488
Google Scholar
[20]
R.D. Jangle, S.S. Pisal, Vacuum foam drying: an alternative to lyophilization for biomolecule preservation, Indian J Pharm Sci, 74 (2012) 91-100.
DOI: 10.4103/0250-474x.103837
Google Scholar
[21]
P.S. Owuor, O. Park, C.F. Woellner, A.S. Jalilov, S. Susarla, J. Joyner, S. Ozden, L. Duy, R.V. Salvatierra, R. Vajtai, J.M. Tour, J. Lou, D.S. Galvao, C.S. Tiwary, P.M. Ajayan, Lightweight Hexagonal Boron Nitride Foam for CO2 Absorption, ACS Nano, 11 (2017) 8944-8952.
DOI: 10.1021/acsnano.7b03291
Google Scholar
[22]
J. Wang, X. Gao, Y. Wang, C. Gao, Novel Graphene Oxide Sponge synthesized by Freeze-Drying Process for the Removal of 2,4,6-Trichlorophenol, RSC Adv, 4 (2014) 57476-57482.
DOI: 10.1039/c4ra09995h
Google Scholar
[23]
M. Maleki, M. Shokouhimehr, H. Karimian, A. Beitollahi, Three-dimensionally Interconnected Porous Boron Nitride Foam Derived From Polymeric Foams, RSC Adv, 6 (2016) 51426-51434.
DOI: 10.1039/c6ra07751j
Google Scholar
[24]
D. Liu, L. He, W. Lei, K.D. Klika, L. Kong, Y. Chen, Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules, Adv. Mater. Interfaces, 2 (2015) 1500228.
DOI: 10.1002/admi.201500228
Google Scholar
[25]
X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, Exfoliation of hexagonal boron nitride by molten hydroxides, Adv. Mater, 25 (2013) 2200-2204.
DOI: 10.1002/adma.201204031
Google Scholar
[26]
X. Zhang, G. Lian, S. Zhang, D. Cui, Q. Wang, Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants, Cryst. Eng. Comm, 14 (2012) 4670–4676.
DOI: 10.1039/c2ce06748j
Google Scholar
[27]
M.L. Hallensleben, Polyvinyl Compounds, Others, Ullmann's Encycl. Ind. Chem, (2000).
DOI: 10.1002/14356007.a21_743
Google Scholar
[28]
M.D. Fernandez, M.J. Fernandez, Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties, J. Appl. Polym. Sci, 102 (2006) 5007-5017.
DOI: 10.1002/app.25004
Google Scholar
[29]
A. Fradet, M. Tessier, Polyesters, Synth. Methods Step-Growth Polym, (2003) 17-134.
Google Scholar
[30]
C. Gautam, S. Chelliah, Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches, RSC Adv, 11 (2021) 31284-31327.
DOI: 10.1039/d1ra05727h
Google Scholar
[31]
X. Wang, Y. Yang, G. Jiang, Z. Yuan, S. Yuan, A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption, Diam. Relat. Mater, 81 (2018) 89-95.
DOI: 10.1016/j.diamond.2017.11.012
Google Scholar
[32]
Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: structures, properties and applications, Chem. Soc. Rev, 46 (2017) 6746-6763.
DOI: 10.1039/c7cs00261k
Google Scholar
[33]
S. Ryu, H. Oh, J. Kim, Facile Liquid-Exfoliation Process of Boron Nitride Nanosheets for Thermal ConductivePolyphthalamide Composite, Polymers, 11 (2019) 1628.
DOI: 10.3390/polym11101628
Google Scholar
[34]
T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun'ko, J. Coleman, Oxygen Radical Functionalization of Boron Nitride Nanosheets, J. Am. Chem. Soc, 134 (2012) 18758-18771.
DOI: 10.1021/ja3080665
Google Scholar
[35]
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev, 45 (2016) 3989-4012.
DOI: 10.1039/c5cs00869g
Google Scholar
[36]
Q. Liu, C. Chen, M. Du, Y. Wu, C. Ren, K. Ding, M. Song, C. Huang, Porous Hexagonal Boron Nitride Sheets: Effect of Hydroxyl and Secondary Amino Groups on Photocatalytic Hydrogen Evolution, ACS Appl. Nano Mater, 1 (2018) 4566-4575.
DOI: 10.1021/acsanm.8b00867
Google Scholar
[37]
X. Zhang, D. Liu, L. Yang, L. Zhou, T. You, Selfassembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A, 3 (2015) 10031–10037.
DOI: 10.1039/c5ta00355e
Google Scholar
[38]
W. Jing, W. Ning, L. Mengnan, G. Chengyue, H. Baorong, L. Guichang, S. Wen, H. Yiteng N. Yanli, Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper, J. Mater. Sci. Technol, 96 (2022) 103-112.
DOI: 10.1016/j.jmst.2021.03.075
Google Scholar
[39]
Ö. Başgöz, S.H. Güler, Ö. Güler, C.A. Canbay, H.M.H. Zakaly, S.A.M. Issa, G. Almisned, H.O. Tekin, Synergistic effect of boron nitride and graphene nanosheets on behavioural attitudes of polyester matrix: Synthesis, experimental and Monte Carlo simulation studies, Diamond Relat. Mater, 126 (2022) 109095.
DOI: 10.1016/j.diamond.2022.109095
Google Scholar
[40]
M. Mirnezhad, R. Ansari, H. Rouhi, ) Mechanical properties of multilayer boron nitride with different stacking orders, Superlattice Microst, 53 (2013) 223-231.
DOI: 10.1016/j.spmi.2012.10.016
Google Scholar
[41]
T.W. Patapoff, D.E. Overcashier, The importance of freezing on lyophilization cycle development, BioPharm, 15 (2002) 17-20.
Google Scholar
[42]
T. Pham, A.P. Goldstein, J.P. Lewicki, S.O. Kucheyev, C. Wang, T.P. Russell, M.A. Worsley, L. Woo, W. Mickelson, A. Zettl, Nanoscale structure and superhydrophobicity of sp2-bonded boron nitride aerogels, Nanoscale, 7 (2015) 10449-10458.
DOI: 10.1039/c5nr01672j
Google Scholar
[43]
W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nat. Commun, 4 (2013) 1777.
DOI: 10.1038/ncomms2818
Google Scholar
[44]
P.M. Sudeep, S. Vinod, S. Ozden, R. Sruthi, A. Kukovecz, Z. Konya, R. Vajtai, M.R. Anantharaman, P.M. Ajayan, T. N. Narayanan, Functionalized boron nitride porous solids, RSC Adv, 5 (2015) 93964-93968.
DOI: 10.1039/c5ra19091f
Google Scholar
[45]
G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui, Q. Wang, Controlled fabrication ofultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment, Energy Environ. Sci, 5 (2012) 7072–7080.
DOI: 10.1039/c2ee03240f
Google Scholar
[46]
D. Liu, W. Lei, S. Qin, Y. Chen, Template-free synthesis of functional 3D BN architecture for removal of dyes from water, Sci. Rep, 4 (2014) 4453.
DOI: 10.1038/srep04453
Google Scholar
[47]
S. Cai, D. Zhang, L. Shi, J. Xu, L. Zhang, L. Huang, H. Li, J. Zhang, Porous Ni–Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts, Nanoscale, 6 (2014) 7346−7353.
DOI: 10.1039/c4nr00475b
Google Scholar