The Effect of Surface Treatment/Polymer Type on Formation of 3D-Boron Nitride Foams

Article Preview

Abstract:

In this study, the use of boron nitride (BN) foam composites as adsorbents in wastewater treatment using polyvinyl alcohol (PVA), polyvinyl butyral (PVB) and polyester (PE) polymers has been investigated. BN powder has been functionalized by Hummer’s and sodium hydroxide (NaOH) methods to facilitate BN binding with the polymer. Fourier Transform Infrared (FT-IR) results show that hydroxyl (-OH) groups are effectively bounded to the BN structure. Scanning Electron Microscope (SEM) observation demonstrated the 3D interconnected porous structure of the obtained BN foams using different polymers. It is observed that BN and polymer interaction is better in foams formed with PVA and PVB compared to PE polymers. PVA and PVB structure shows a bridge property to link the layers so that a porous network structure is formed. It has been determined that the foam composite modified with Hummer’s method and using PVB as a polymer (h-BN-PVB-H) reaches an adsorption capacity of 8.843 mg/g in 44 hours and provides approximately 18% Crystal Violet (CV) dye removal. h-BN-PVB-H foam composite removes approximately 26% of Reactive Blue 49 (RB 49) dye with an adsorption capacity of 12.313 mg/g in the first 10 minutes. The 3D BN/Polymer foams showed reasonable absorption capacities for olive oil, cyclohexane and toluene from 200-980 wt% relative to the foam’s dry weight. It shows that the produced composite foams can absorb approximately 2-10 times their own weight.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-48

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dalton, D. Jin, Extent and frequency of vessel oil spills in US marine protected areas, Mar. Pollut. Bull, 60 (2010) 1939-1945.

DOI: 10.1016/j.marpolbul.2010.07.036

Google Scholar

[2] R. Biela, L. Sopikova, Efficiency of sorption materials on the removal of lead from water, Appl. Ecol. Env. Res, 15 (2017)1527-1536.

DOI: 10.15666/aeer/1503_15271536

Google Scholar

[3] G. Zhong-Zheng, Q. Na, C. Wen-Jie, Z. Hui, Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes, Arab. J. Chem, 15 (2022) 104105.

DOI: 10.1016/j.arabjc.2022.104105

Google Scholar

[4] L. Ting-Ting, Z. Xiao, W. Zhike, R. Hai-Tao, P. Hao-Kai, S. Bing-Chiuan, L. Ching-Wen, L. Jia-Horng, Study on melamine/bentonite polyurethane porous composite foam: Pb2+ adsorption and mechanical properties, Polym. Advan. Technol, 32 (2021) 2061-2071.

DOI: 10.1002/pat.5235

Google Scholar

[5] L. Yi, M. Yi, Q. Xiumei, Z. Feng, W. Hongquan, Z. Sen, Y. Chunjie, Novel porous phosphoric acid-based geopolymer foams for adsorption of Pb(II), Cd(II) and Ni(II) mixtures: Behavior and mechanism, Ceram. Int, 49 (2023) 7030-7039.

DOI: 10.1016/j.ceramint.2022.10.164

Google Scholar

[6] L. Ting-Ting, L. Shuxia, Z. Xiao, S. Bing-Chiuan, P. Hao-Kai, R. Hai-Tao, M. Chun-Hui, L. Ching-Wen, L. Jia-Horng, Study on fabric/polyurethane high strength porous composite foam: Pb2+ adsorption properties and mechanical properties, Polym. Composite, 42 (2021) 6322-6331.

DOI: 10.1002/pc.26300

Google Scholar

[7] P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization, J. Mater. Chem. A, 5 (2017) 14748-14757.

DOI: 10.1039/c7ta03515b

Google Scholar

[8] M. Favaro, S. Agnoli, M. Cattelan, A. Moretto, C. Durante, S. Leonardi, J. Kunze-Liebhauser, O. Schneider, A. Gennaro, G. Granozzi, Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials, Carbon, 77 (2014) 405-415.

DOI: 10.1016/j.carbon.2014.05.044

Google Scholar

[9] J. Chen, S. Chen, G. Lai, Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture, Nanoscale Res. Lett, 7 (2012) 170.

DOI: 10.1186/1556-276x-7-170

Google Scholar

[10] Y. Zhao, K. Pan, S. Wei, B. Zhang, Template-free hydrothermal synthesis of 3D hollow aggregate spherical structure WO3 nano-plates and photocatalytic properties, Mater. Res. Bull, 101 (2018) 280-286.

DOI: 10.1016/j.materresbull.2018.01.049

Google Scholar

[11] S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures, ACS Appl. Mater. Inter, 9 (2017) 20833-20842.

DOI: 10.1021/acsami.7b04095

Google Scholar

[12] S. Ye, J. Feng, P. Wu, Highly elastic graphene oxide–epoxy composite aerogels via simple freeze-drying and subsequent routine curing, J. Mater. Chem. A, 1 (2013) 3495-3502.

DOI: 10.1039/c2ta01142e

Google Scholar

[13] F. Mohandes, M. Salavati-Niasari, Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite, RSC Adv, 4 (2014) 25993-26001.

DOI: 10.1039/c4ra03534h

Google Scholar

[14] L. Qian, H. Zhang, Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials, J. Chem. Technol. Biot, 86 (2010) 172-184.

DOI: 10.1002/jctb.2495

Google Scholar

[15] W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility, Nano Res, 7 (2014) 1731–1737.

DOI: 10.1007/s12274-014-0532-x

Google Scholar

[16] H. Geng, Y. Xu, L. Zheng, H. Gong, L. Dai, X. Dai, An overview of removing heavy metals from sewage sludge: Achievements and perspectives, Environ. Pollut, 266 (2020) 115375.

DOI: 10.1016/j.envpol.2020.115375

Google Scholar

[17] B. Thomas, S. Geng, M. Sain, K. Oksman, Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications, Nanomaterials, 11 (2021) 653.

DOI: 10.3390/nano11030653

Google Scholar

[18] S. Agarwal, A.P. Singh, Performance evaluation of textile wastewater treatment techniques using sustainability index: An integrated fuzzy approach of assessment, J. Clean. Prod. 337 (2022) 130384.

DOI: 10.1016/j.jclepro.2022.130384

Google Scholar

[19] D. Nowak, E. Jakubczyk, The Freeze-Drying of Foods-The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials, Foods, 9 (2020) 1488.

DOI: 10.3390/foods9101488

Google Scholar

[20] R.D. Jangle, S.S. Pisal, Vacuum foam drying: an alternative to lyophilization for biomolecule preservation, Indian J Pharm Sci, 74 (2012) 91-100.

DOI: 10.4103/0250-474x.103837

Google Scholar

[21] P.S. Owuor, O. Park, C.F. Woellner, A.S. Jalilov, S. Susarla, J. Joyner, S. Ozden, L. Duy, R.V. Salvatierra, R. Vajtai, J.M. Tour, J. Lou, D.S. Galvao, C.S. Tiwary, P.M. Ajayan, Lightweight Hexagonal Boron Nitride Foam for CO2 Absorption, ACS Nano, 11 (2017) 8944-8952.

DOI: 10.1021/acsnano.7b03291

Google Scholar

[22] J. Wang, X. Gao, Y. Wang, C. Gao, Novel Graphene Oxide Sponge synthesized by Freeze-Drying Process for the Removal of 2,4,6-Trichlorophenol, RSC Adv, 4 (2014) 57476-57482.

DOI: 10.1039/c4ra09995h

Google Scholar

[23] M. Maleki, M. Shokouhimehr, H. Karimian, A. Beitollahi, Three-dimensionally Interconnected Porous Boron Nitride Foam Derived From Polymeric Foams, RSC Adv, 6 (2016) 51426-51434.

DOI: 10.1039/c6ra07751j

Google Scholar

[24] D. Liu, L. He, W. Lei, K.D. Klika, L. Kong, Y. Chen, Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules, Adv. Mater. Interfaces, 2 (2015) 1500228.

DOI: 10.1002/admi.201500228

Google Scholar

[25] X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, Exfoliation of hexagonal boron nitride by molten hydroxides, Adv. Mater, 25 (2013) 2200-2204.

DOI: 10.1002/adma.201204031

Google Scholar

[26] X. Zhang, G. Lian, S. Zhang, D. Cui, Q. Wang, Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants, Cryst. Eng. Comm, 14 (2012) 4670–4676.

DOI: 10.1039/c2ce06748j

Google Scholar

[27] M.L. Hallensleben, Polyvinyl Compounds, Others, Ullmann's Encycl. Ind. Chem, (2000).

DOI: 10.1002/14356007.a21_743

Google Scholar

[28] M.D. Fernandez, M.J. Fernandez, Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties, J. Appl. Polym. Sci, 102 (2006) 5007-5017.

DOI: 10.1002/app.25004

Google Scholar

[29] A. Fradet, M. Tessier, Polyesters, Synth. Methods Step-Growth Polym, (2003) 17-134.

Google Scholar

[30] C. Gautam, S. Chelliah, Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches, RSC Adv, 11 (2021) 31284-31327.

DOI: 10.1039/d1ra05727h

Google Scholar

[31] X. Wang, Y. Yang, G. Jiang, Z. Yuan, S. Yuan, A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption, Diam. Relat. Mater, 81 (2018) 89-95.

DOI: 10.1016/j.diamond.2017.11.012

Google Scholar

[32] Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: structures, properties and applications, Chem. Soc. Rev, 46 (2017) 6746-6763.

DOI: 10.1039/c7cs00261k

Google Scholar

[33] S. Ryu, H. Oh, J. Kim, Facile Liquid-Exfoliation Process of Boron Nitride Nanosheets for Thermal ConductivePolyphthalamide Composite, Polymers, 11 (2019) 1628.

DOI: 10.3390/polym11101628

Google Scholar

[34] T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun'ko, J. Coleman, Oxygen Radical Functionalization of Boron Nitride Nanosheets, J. Am. Chem. Soc, 134 (2012) 18758-18771.

DOI: 10.1021/ja3080665

Google Scholar

[35] Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev, 45 (2016) 3989-4012.

DOI: 10.1039/c5cs00869g

Google Scholar

[36] Q. Liu, C. Chen, M. Du, Y. Wu, C. Ren, K. Ding, M. Song, C. Huang, Porous Hexagonal Boron Nitride Sheets: Effect of Hydroxyl and Secondary Amino Groups on Photocatalytic Hydrogen Evolution, ACS Appl. Nano Mater, 1 (2018) 4566-4575.

DOI: 10.1021/acsanm.8b00867

Google Scholar

[37] X. Zhang, D. Liu, L. Yang, L. Zhou, T. You, Selfassembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A, 3 (2015) 10031–10037.

DOI: 10.1039/c5ta00355e

Google Scholar

[38] W. Jing, W. Ning, L. Mengnan, G. Chengyue, H. Baorong, L. Guichang, S. Wen, H. Yiteng N. Yanli, Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper, J. Mater. Sci. Technol, 96 (2022) 103-112.

DOI: 10.1016/j.jmst.2021.03.075

Google Scholar

[39] Ö. Başgöz, S.H. Güler, Ö. Güler, C.A. Canbay, H.M.H. Zakaly, S.A.M. Issa, G. Almisned, H.O. Tekin, Synergistic effect of boron nitride and graphene nanosheets on behavioural attitudes of polyester matrix: Synthesis, experimental and Monte Carlo simulation studies, Diamond Relat. Mater, 126 (2022) 109095.

DOI: 10.1016/j.diamond.2022.109095

Google Scholar

[40] M. Mirnezhad, R. Ansari, H. Rouhi, ) Mechanical properties of multilayer boron nitride with different stacking orders, Superlattice Microst, 53 (2013) 223-231.

DOI: 10.1016/j.spmi.2012.10.016

Google Scholar

[41] T.W. Patapoff, D.E. Overcashier, The importance of freezing on lyophilization cycle development, BioPharm, 15 (2002) 17-20.

Google Scholar

[42] T. Pham, A.P. Goldstein, J.P. Lewicki, S.O. Kucheyev, C. Wang, T.P. Russell, M.A. Worsley, L. Woo, W. Mickelson, A. Zettl, Nanoscale structure and superhydrophobicity of sp2-bonded boron nitride aerogels, Nanoscale, 7 (2015) 10449-10458.

DOI: 10.1039/c5nr01672j

Google Scholar

[43] W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nat. Commun, 4 (2013) 1777.

DOI: 10.1038/ncomms2818

Google Scholar

[44] P.M. Sudeep, S. Vinod, S. Ozden, R. Sruthi, A. Kukovecz, Z. Konya, R. Vajtai, M.R. Anantharaman, P.M. Ajayan, T. N. Narayanan, Functionalized boron nitride porous solids, RSC Adv, 5 (2015) 93964-93968.

DOI: 10.1039/c5ra19091f

Google Scholar

[45] G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui, Q. Wang, Controlled fabrication ofultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment, Energy Environ. Sci, 5 (2012) 7072–7080.

DOI: 10.1039/c2ee03240f

Google Scholar

[46] D. Liu, W. Lei, S. Qin, Y. Chen, Template-free synthesis of functional 3D BN architecture for removal of dyes from water, Sci. Rep, 4 (2014) 4453.

DOI: 10.1038/srep04453

Google Scholar

[47] S. Cai, D. Zhang, L. Shi, J. Xu, L. Zhang, L. Huang, H. Li, J. Zhang, Porous Ni–Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts, Nanoscale, 6 (2014) 7346−7353.

DOI: 10.1039/c4nr00475b

Google Scholar