[1]
S. Siddique and J. C. L. Chow, Application of nanomaterials in biomedical imaging and cancer therapy, Nanomater. 10 (2022) 1700 1-40.
Google Scholar
[2]
K. K. Kefeni, T. A. M. Msagati, T. TI. Nkambule, and B. B. Mamba, Spinel ferrite nanoparticles and nanocomposite for biomedical applications and their toxicity, Mater. Sci. Eng. C 107 (2020) 110314 1-19.
DOI: 10.1016/j.msec.2019.110314
Google Scholar
[3]
R. Wei, Y. Xu, and M. Xue, Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications, J. Mat. Chem. B 9 (2021) 1965-1979.
DOI: 10.1039/d0tb02858d
Google Scholar
[4]
L. Xie, W. Jin, H. Chen, and Q. Zhang, Superparamagnetic iron oxide nanoparticles for cancer diagnosis and therapy, J. Biomed. Nanotechnol. 15 (2019) 215-416.
DOI: 10.1166/jbn.2019.2678
Google Scholar
[5]
A. Farzin, S. A. Etesami, J. Quint, A. Memic, and A. Tamayol, Magnetic nanoparticles in cancer therapy and diagnosis, Adv. Healthc. Mater. 9 (2020) 1901058.
DOI: 10.1002/adhm.201901058
Google Scholar
[6]
A. Saraste, S. G. Nekolla, and M. Schwaiger, Cardiovascular molecular imaging: An overview, Cardiovasc. Res. 83 (2009) 643–652.
DOI: 10.1093/cvr/cvp209
Google Scholar
[7]
X. Wang, D. Niu, Q. Wu, S. Bao, T. Su, X. Liu, S. Zhang, dan Q. Wang, Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents, Biomaterials 53 (2015) 349–357.
DOI: 10.1016/j.biomaterials.2015.02.101
Google Scholar
[8]
L. Zeng, W. Ren, J. Zheng, P. Cui, and A. Wu, Ultrasmall water-soluble metal-iron oxide nanoparticles as T 1-weighted contrast agents for magnetic resonance imaging, Phys. Chem. Chem. Phys. 14 (2012) 2631–2636.
DOI: 10.1039/c2cp23196d
Google Scholar
[9]
B. den Ade, S.M. Bovens, B. Boekhorst, G.J. Strijkers, R.E. Poelmann, L.V. Weerd, dan G., Pasterkamp, Histological validation of iron-oxide and gadolinium based MRI contrast agents in experimental atherosclerosis: The do's and don't's, Atherosclerosis 225 (2012) 274–280.
DOI: 10.1016/j.atherosclerosis.2012.07.028
Google Scholar
[10]
T. Iwamoto, K. Matsumoto, T. Matsushita, M. Inokuchi, and N. Toshima, Direct synthesis and characterizations of fact-structured FePt nanoparticles using poly (N-vinyl-2-pyrrolidone) as a protecting agent, J. Colloid Interface Sci. 336 (2009) 879–888.
DOI: 10.1016/j.jcis.2009.03.083
Google Scholar
[11]
D. Clases, M. Sperling, and U. Karst, Analysis of metal-based contrast agents in medicine and the environment, TrAC Trends Anal. Chem. 104 (2018) 135–147.
DOI: 10.1016/j.trac.2017.12.011
Google Scholar
[12]
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, dan R.N. Muller, MRI Contrast Agents: From Molecules to Particles. Singapore: Springer Nature, 2017.
Google Scholar
[13]
S. Esir, R. Topkaya, A. Baykal, Ö. Akman, and M. S. Toprak, Magnetic Properties of Annealed CoFe2O4 Nanoparticles Synthesized by the PEG-Assisted Route, J. Inorg. Organomet. Polym. Mater. 24 (2014) 424–430.
DOI: 10.1007/s10904-013-9997-4
Google Scholar
[14]
A. Durdureanu-Angheluta, C. Mihesan, F. Doroftei, A. Dascalu, L. Ursu, M. Velegrakis, and M. Pinteala, Formation by laser ablation in liquid (LAL) and characterization of citric-acid-coated iron oxide nanoparticles, Rev. Roum. Chim. 59 (2014) 151–159.
Google Scholar
[15]
A. Kebede, A.K. Singh, P.K. Rai, N.J. Giri, A.K. Rai, G. Watal, and Gholap, Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin, Lasers Med. Sci. 28 (2013) 579–587.
DOI: 10.1007/s10103-012-1106-3
Google Scholar
[16]
M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, Synthesis of nanoparticles by laser ablation: A review, KONA Powder Part. J. 34 (2017) 80–90.
DOI: 10.14356/kona.2017009
Google Scholar
[17]
S. M. Eaton, H., Zhang, and P.R. Herman, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt. Express 13 (2005) 4708–4716.
DOI: 10.1364/opex.13.004708
Google Scholar
[18]
H. H. Liu, S. Surawanvijit, R. Rallo, G. Orkoulas, and Y. Cohen, Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation, Environ. Sci. Technol. 45 (2011) 9284–9292.
DOI: 10.1021/es202134p
Google Scholar
[19]
R. Vasireddi, M. Vakili, D. Monteiro, and M. Trebbin, Size Controlled Synthesis of γ-Fe2O3 Nanoparticles by Simple Chemical method and Study of Optical Properties, Int. J. Sci. Eng. Manag. 1 (2016) 1304–2456.
Google Scholar
[20]
A. Ruíz-Baltazar, R. Esparza, G. Rosas, and R. Pérez, Effect of the surfactant on the growth and oxidation of iron nanoparticles, J. Nanomater. 16 (2015) 240948 1-8.
DOI: 10.1155/2015/240948
Google Scholar
[21]
I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931.
Google Scholar
[22]
G. A. Kurian, A. Meyyappan, and S. A. Banu, One step synthesis of iron oxide nanoparticles via chemical and green route–an effective comparison, Int. J. Pharm. Pharm. Sci. 7 (2015) 70–74.
Google Scholar
[23]
V. Paredes-García et al., One pot Solvothermal synthesis of organic acid coated magnetic iron oxide Nanoparticles, J. Chil. Chem. Soc. 58 (2013) 2011–(2015)
DOI: 10.4067/s0717-97072013000400023
Google Scholar
[24]
I. Karimzadeh, M. Aghazadeh, and T. Doroudi, Preparation and characterization of poly (vinylpyrrolidone)/polyvinyl chloride coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications, Anal. Bioanal. Electrochem. 8 (2016) 604–614.
DOI: 10.1016/j.matlet.2016.05.048
Google Scholar
[25]
G. Stinnet, N. Taheri, J. Villanova, A. Bohloul, X. Guo, E. P. Esposito, Z. Xiao, D. Stueber, C. Avendano, P. Decuzzi, R. G. Pautler, and V. L. Colvin, 2D Gadolinium oxide nanoparticles as T1 magnetic resonance imaging contrast agents, Adv. Healthc. Mater. 10 (2021) e2001780 1-15
DOI: 10.1002/adhm.202001780
Google Scholar
[26]
B. Thapa, D. D.-Diestra, C. S.-Medina, N. Kumar, K. Tu, J. B.-Huarac, W. M. Jadwisienczak, B. R. Weiner, and G. Morell, T1- and T2-weighted magentic resonance dual contrast by single core truncated cubic iron oxide nanoparticles with abrupt cellular internalization and immune evasion, ACS Appl. Bio Mater. 1 (2018) 79-89.
DOI: 10.1021/acsabm.8b00016
Google Scholar
[27]
Z. Zhou, L. Wang, X. Chi, J. Bao, L. Yang, W. Zhao, Z. Chen, X. Wang, X. Chen, and J. Gao, Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7 (2013) 3287-3296.
DOI: 10.1021/nn305991e
Google Scholar
[28]
Z. Zhou, Z. Zao, H. Zhang, Z. Wang, X. Chen, R. Wang, Z. Chen, and J. Gao, Interplay between longitudional and transverse contrasts in Fe3O4 nanoparticles with (111) exposed surface, ACS Nano 8 (2014) 7976-7985.
DOI: 10.1021/nn5038652
Google Scholar
[29]
A. Alipour, Z. Soran-Erdem, M. Utkur, V.K. Shamra, O. Algin, E.U. Saritas, and HV Demir, A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI, Magn. Reson. Imaging 49 (2018) 16–24.
DOI: 10.1016/j.mri.2017.09.013
Google Scholar
[30]
C. Yue-Jian, T. Juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, and Ge. Liang, Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent, Drug Dev. Ind. Pharm. 36 (2010) 1235–1244.
DOI: 10.3109/03639041003710151
Google Scholar
[31]
K. M. Yang, H.-I. Cho, H. J. Choi, and Y. Piao, Synthesis of water well-dispersed PEGylated iron oxide nanoparticles for MR/optical lymph node imaging, J. Mater. Chem. B 2 (2014) , 3355–3364.
DOI: 10.1039/c4tb00084f
Google Scholar
[32]
B. Babić-Stojić, V., Jokanovic, D. Milivojevic, M. Pozek, Z., Jaglicic, D. Makovec, N.J. Orsini, M. Markovic, K. Arsikin, and V. Paunovic, Ultrasmall iron oxide nanoparticles: Magnetic and NMR relaxometric properties, Curr. Appl. Phys. 18 (2018) 141–149.
DOI: 10.1016/j.cap.2017.11.017
Google Scholar