Iron Oxide Nanoparticles Produced by a Low-Energy Nd: YAG Laser Ablation Technique and Their Application as Contrast Agent for Magnetic Resonance Imaging

Article Preview

Abstract:

A magnetic resonance imaging contrast agent is proposed using iron oxide nanoparticles (IONPs) synthesized by a pulsed laser ablation technique. Experimentally, an Nd: YAG laser (1064 nm, 7 ns, 30 mJ) was directed and focused on a high-purity iron plate immersed in a liquid solution of deionized water and polyvinylpyrrolidone (PVP). After a few minutes of laser bombardment, iron oxide nanoparticles dispersed in the liquid were homogeneously produced. A reddish yellow color-colloidal IONPs are produced in the water, while its color changes to dark brown for the PVP solution. The characterization results demonstrated that IONPs in the form of Fe2O3 and Fe3O4 made in the PVP have an excellent dispersibility with a spherical shape that is significantly smaller than that of IONPs made in the deionized water at the same laser repetition rate. The produced IONPs are further applied as a contrast agent for the magnetic resonance imaging (MRI) modality by varying concentrations from 0.05 mM to 2.31 mM. The results demonstrated that images of the IONPs sample with a concentration of 2.31 mM showed the highest contrast enhancement (Cenh), with an enhancement factor of 221.875 % for T1-weighted images and 91.227 % for T2-weighted images. IONPs with a concentration of 2.31 mM had the highest signal-to-noise ratio (SNR) for a T1-weighted picture of 52.92, while IONPs with a concentration of 0.05 mM had the highest SNR for a T2-weighted image of 179.117.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-80

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Siddique and J. C. L. Chow, Application of nanomaterials in biomedical imaging and cancer therapy, Nanomater. 10 (2022) 1700 1-40.

Google Scholar

[2] K. K. Kefeni, T. A. M. Msagati, T. TI. Nkambule, and B. B. Mamba, Spinel ferrite nanoparticles and nanocomposite for biomedical applications and their toxicity, Mater. Sci. Eng. C 107 (2020) 110314 1-19.

DOI: 10.1016/j.msec.2019.110314

Google Scholar

[3] R. Wei, Y. Xu, and M. Xue, Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications, J. Mat. Chem. B 9 (2021) 1965-1979.

DOI: 10.1039/d0tb02858d

Google Scholar

[4] L. Xie, W. Jin, H. Chen, and Q. Zhang, Superparamagnetic iron oxide nanoparticles for cancer diagnosis and therapy, J. Biomed. Nanotechnol. 15 (2019) 215-416.

DOI: 10.1166/jbn.2019.2678

Google Scholar

[5] A. Farzin, S. A. Etesami, J. Quint, A. Memic, and A. Tamayol, Magnetic nanoparticles in cancer therapy and diagnosis, Adv. Healthc. Mater. 9 (2020) 1901058.

DOI: 10.1002/adhm.201901058

Google Scholar

[6] A. Saraste, S. G. Nekolla, and M. Schwaiger, Cardiovascular molecular imaging: An overview, Cardiovasc. Res. 83 (2009) 643–652.

DOI: 10.1093/cvr/cvp209

Google Scholar

[7] X. Wang, D. Niu, Q. Wu, S. Bao, T. Su, X. Liu, S. Zhang, dan Q. Wang, Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents, Biomaterials 53 (2015) 349–357.

DOI: 10.1016/j.biomaterials.2015.02.101

Google Scholar

[8] L. Zeng, W. Ren, J. Zheng, P. Cui, and A. Wu, Ultrasmall water-soluble metal-iron oxide nanoparticles as T 1-weighted contrast agents for magnetic resonance imaging, Phys. Chem. Chem. Phys. 14 (2012) 2631–2636.

DOI: 10.1039/c2cp23196d

Google Scholar

[9] B. den Ade, S.M. Bovens, B. Boekhorst, G.J. Strijkers, R.E. Poelmann, L.V. Weerd, dan G., Pasterkamp, Histological validation of iron-oxide and gadolinium based MRI contrast agents in experimental atherosclerosis: The do's and don't's, Atherosclerosis 225 (2012) 274–280.

DOI: 10.1016/j.atherosclerosis.2012.07.028

Google Scholar

[10] T. Iwamoto, K. Matsumoto, T. Matsushita, M. Inokuchi, and N. Toshima, Direct synthesis and characterizations of fact-structured FePt nanoparticles using poly (N-vinyl-2-pyrrolidone) as a protecting agent, J. Colloid Interface Sci. 336 (2009) 879–888.

DOI: 10.1016/j.jcis.2009.03.083

Google Scholar

[11] D. Clases, M. Sperling, and U. Karst, Analysis of metal-based contrast agents in medicine and the environment, TrAC Trends Anal. Chem. 104 (2018) 135–147.

DOI: 10.1016/j.trac.2017.12.011

Google Scholar

[12] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, dan R.N. Muller, MRI Contrast Agents: From Molecules to Particles. Singapore: Springer Nature, 2017.

Google Scholar

[13] S. Esir, R. Topkaya, A. Baykal, Ö. Akman, and M. S. Toprak, Magnetic Properties of Annealed CoFe2O4 Nanoparticles Synthesized by the PEG-Assisted Route, J. Inorg. Organomet. Polym. Mater. 24 (2014) 424–430.

DOI: 10.1007/s10904-013-9997-4

Google Scholar

[14] A. Durdureanu-Angheluta, C. Mihesan, F. Doroftei, A. Dascalu, L. Ursu, M. Velegrakis, and M. Pinteala, Formation by laser ablation in liquid (LAL) and characterization of citric-acid-coated iron oxide nanoparticles, Rev. Roum. Chim. 59 (2014) 151–159.

Google Scholar

[15] A. Kebede, A.K. Singh, P.K. Rai, N.J. Giri, A.K. Rai, G. Watal, and Gholap, Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin, Lasers Med. Sci. 28 (2013) 579–587.

DOI: 10.1007/s10103-012-1106-3

Google Scholar

[16] M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, Synthesis of nanoparticles by laser ablation: A review, KONA Powder Part. J. 34 (2017) 80–90.

DOI: 10.14356/kona.2017009

Google Scholar

[17] S. M. Eaton, H., Zhang, and P.R. Herman, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt. Express 13 (2005) 4708–4716.

DOI: 10.1364/opex.13.004708

Google Scholar

[18] H. H. Liu, S. Surawanvijit, R. Rallo, G. Orkoulas, and Y. Cohen, Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation, Environ. Sci. Technol. 45 (2011) 9284–9292.

DOI: 10.1021/es202134p

Google Scholar

[19] R. Vasireddi, M. Vakili, D. Monteiro, and M. Trebbin, Size Controlled Synthesis of γ-Fe2O3 Nanoparticles by Simple Chemical method and Study of Optical Properties, Int. J. Sci. Eng. Manag. 1 (2016) 1304–2456.

Google Scholar

[20] A. Ruíz-Baltazar, R. Esparza, G. Rosas, and R. Pérez, Effect of the surfactant on the growth and oxidation of iron nanoparticles, J. Nanomater. 16 (2015) 240948 1-8.

DOI: 10.1155/2015/240948

Google Scholar

[21] I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. 12 (2019) 908–931.

Google Scholar

[22] G. A. Kurian, A. Meyyappan, and S. A. Banu, One step synthesis of iron oxide nanoparticles via chemical and green route–an effective comparison, Int. J. Pharm. Pharm. Sci. 7 (2015) 70–74.

Google Scholar

[23] V. Paredes-García et al., One pot Solvothermal synthesis of organic acid coated magnetic iron oxide Nanoparticles, J. Chil. Chem. Soc. 58 (2013) 2011–(2015)

DOI: 10.4067/s0717-97072013000400023

Google Scholar

[24] I. Karimzadeh, M. Aghazadeh, and T. Doroudi, Preparation and characterization of poly (vinylpyrrolidone)/polyvinyl chloride coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical applications, Anal. Bioanal. Electrochem. 8 (2016) 604–614.

DOI: 10.1016/j.matlet.2016.05.048

Google Scholar

[25] G. Stinnet, N. Taheri, J. Villanova, A. Bohloul, X. Guo, E. P. Esposito, Z. Xiao, D. Stueber, C. Avendano, P. Decuzzi, R. G. Pautler, and V. L. Colvin, 2D Gadolinium oxide nanoparticles as T1 magnetic resonance imaging contrast agents, Adv. Healthc. Mater. 10 (2021) e2001780 1-15

DOI: 10.1002/adhm.202001780

Google Scholar

[26] B. Thapa, D. D.-Diestra, C. S.-Medina, N. Kumar, K. Tu, J. B.-Huarac, W. M. Jadwisienczak, B. R. Weiner, and G. Morell, T1- and T2-weighted magentic resonance dual contrast by single core truncated cubic iron oxide nanoparticles with abrupt cellular internalization and immune evasion, ACS Appl. Bio Mater. 1 (2018) 79-89.

DOI: 10.1021/acsabm.8b00016

Google Scholar

[27] Z. Zhou, L. Wang, X. Chi, J. Bao, L. Yang, W. Zhao, Z. Chen, X. Wang, X. Chen, and J. Gao, Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano 7 (2013) 3287-3296.

DOI: 10.1021/nn305991e

Google Scholar

[28] Z. Zhou, Z. Zao, H. Zhang, Z. Wang, X. Chen, R. Wang, Z. Chen, and J. Gao, Interplay between longitudional and transverse contrasts in Fe3O4 nanoparticles with (111) exposed surface, ACS Nano 8 (2014) 7976-7985.

DOI: 10.1021/nn5038652

Google Scholar

[29] A. Alipour, Z. Soran-Erdem, M. Utkur, V.K. Shamra, O. Algin, E.U. Saritas, and HV Demir, A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI, Magn. Reson. Imaging 49 (2018) 16–24.

DOI: 10.1016/j.mri.2017.09.013

Google Scholar

[30] C. Yue-Jian, T. Juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, and Ge. Liang, Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent, Drug Dev. Ind. Pharm. 36 (2010) 1235–1244.

DOI: 10.3109/03639041003710151

Google Scholar

[31] K. M. Yang, H.-I. Cho, H. J. Choi, and Y. Piao, Synthesis of water well-dispersed PEGylated iron oxide nanoparticles for MR/optical lymph node imaging, J. Mater. Chem. B 2 (2014) , 3355–3364.

DOI: 10.1039/c4tb00084f

Google Scholar

[32] B. Babić-Stojić, V., Jokanovic, D. Milivojevic, M. Pozek, Z., Jaglicic, D. Makovec, N.J. Orsini, M. Markovic, K. Arsikin, and V. Paunovic, Ultrasmall iron oxide nanoparticles: Magnetic and NMR relaxometric properties, Curr. Appl. Phys. 18 (2018) 141–149.

DOI: 10.1016/j.cap.2017.11.017

Google Scholar