[1]
X. She, L. Cong, B. Nie, G. Leng, H. Peng, Y. Chen, X. Zhang, Energy efficient and economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review, Appl. Energy 232 (2018) 157–186.
DOI: 10.1016/j.apenergy.2018.09.067
Google Scholar
[2]
A. Arora, S.C. Kaushik, Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A, Int. J. Refrig. 31 (2008) 998–1005.
DOI: 10.1016/j.ijrefrig.2007.12.015
Google Scholar
[3]
Z. Roy, G. Halder, Replacement of halogenated refrigerants towards sustainable cooling system: A review, Chem. Eng. J. Adv. 3 (2020) 100027.
DOI: 10.1016/j.ceja.2020.100027
Google Scholar
[4]
M. Ogbonnaya, O.O. Ajayi, M.A. Waheed, E. Y. Salawu, Thermophysical properties and heat transfer characteristics of nanorefrigerants: Some existing results and areas for further research, Key Eng. Mater. 917 (2020) 207–227.
DOI: 10.4028/p-j63e4z
Google Scholar
[5]
R.L. Fragelli, L. Eduardo, D.A. Sanchez, R. Roberto, I. Neto, Refrigeration capacity of silver nano fluids under electrohydrodynamic effect oriented to heat removal in machining process, Exp. Therm. and Fluid Sci. 96 (2018) 11–19.
DOI: 10.1016/j.expthermflusci.2018.02.022
Google Scholar
[6]
A.R.I. Ali, B. Salam, A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Appl. Sci. 2 (2020) 2:1636.
DOI: 10.1007/s42452-020-03427-1
Google Scholar
[7]
M. Feroskhan, T. Venugopal, N.M. Almakayeel, T.M. Yunus Khan, S. Alghamdi, A.S. Almuflih, and N. Gobinat, Fundamentals, thermophysical properties, and heat transfer characteristics of nanorefrigerants: A review, Journal of Nanomater. (2022) 8618152.
DOI: 10.1155/2022/8618152
Google Scholar
[8]
M. Ghanbarpour, E.B. Haghigi, R. Khodabandeh, Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid, Exp. Therm. Fluid Sci. 53 (2014) 227–235.
DOI: 10.1016/j.expthermflusci.2013.12.013
Google Scholar
[9]
L. Kundan, K. Singh, Improved performance of a nanorefrigerant-based vapor compression refrigeration system: A new alternative. Proceedings of the Institution of Mechanical Engineers, Part A: J Power Eng. 235 (2021) 106–123.
DOI: 10.1177/0957650920904553
Google Scholar
[10]
A. Kumar, G. Narendran, D. Arumuga Perumal, Effects of nanorefrigerants for refrigeration system: A Review. Nanosci. Tech.: An Int. J. 14 (2023) 17—36.
DOI: 10.1615/nanoscitechnolintj.2022040981
Google Scholar
[11]
A S. HudaElslam Mohamed, U. Camdali, M. Actas, Evaluation of a refrigeration system based on nano-refrigerants and nano-lubricants. Am. J Eng. Appl. Sci. 14 (2021) 371–382.
DOI: 10.3844/ajeassp.2021.371.382
Google Scholar
[12]
H.T. Zhu, Y. S. Lin, Y.S. Yin, A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci. 277 (2004) 100–103.
DOI: 10.1016/j.jcis.2004.04.026
Google Scholar
[13]
W.N. Septiadi, I.N.T. Trisnadewi, N. Putra, I. Setyawan, Synthesis of hybrid nanofluid with two-step method, E3S Web of Conf. 3rd i-TREC (2018) 1–7.
DOI: 10.1051/e3sconf/20186703057
Google Scholar
[14]
E.E. Elemike, A.C. Ekennia, D.C. Onwudiwe, R.O. Ezeani, Agro-waste materials: Sustainable substrates in nanotechnology, Kamel A. Abd-Elsalam, Rajiv Periakaruppan, S. Rajeshkumar (Eds), In Nanobiotechnology for Plant Protection, Agri-Waste and Microbes for Production of Sustainable Nanomaterials, Elsevier, 2022, pp.187-214.
DOI: 10.1016/b978-0-12-823575-1.00022-6
Google Scholar
[15]
B. Bhardwaj, P. Singh, A. Kumar, S. Kumar, V. Budhwar, Eco-Friendly greener synthesis of nanoparticles, Adv. Pharm. Bull. 10 (2020) 566–576.
DOI: 10.34172/apb.2020.067
Google Scholar
[16]
T. Mochochoko, S.O. Oluwatobi, N.J. Denis, P.S. Sandile, Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed, water hyacinth. Carbohydr. Polym. 98 (2013) 290 – 294.
DOI: 10.1016/j.carbpol.2013.05.038
Google Scholar
[17]
L. Habte, S. Natnael, M. Dure, T. Thriveni, C. Ramakrishna, W.A. Ji, Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability (Switzerland) 11 (2019) 1–10.
DOI: 10.3390/su11113196
Google Scholar
[18]
H.I. Abdel-Shafy, S.M.M. Mansour, Green synthesis of metallic nanoparticles from natural resources and food waste and their environmental application. The Macabresque, Human Violation and Hate in Genocide, Mass Atrocity and Enemy-Making (2018) 321–385.
DOI: 10.1002/9781119418900.ch11
Google Scholar
[19]
N. Ajmal, S. Keerti, M.A. Bakht, R. Yassine, M.J. Ahsan, M. Noushad, Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit's peel agro-waste extracts, characterization, in vitro antibacterial, antioxidant activities, Green Chem. Lett. Rev. 12 (2019) 244–254.
DOI: 10.1080/17518253.2019.1629641
Google Scholar
[20]
K.L. Ong, G. Kaur, N. Pensupa, K. Uisan, C. S. K. Lin, Trends in food waste valorization for the production of chemicals, materials, and fuels: Case study South and Southeast Asia. Bioresour. Tech. 248 (2018) 100–112.
DOI: 10.1016/j.biortech.2017.06.076
Google Scholar
[21]
A. Zuorro, I. Annalaura, N. Stefano, L. Roberto, Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes 7 (2019) 193.
DOI: 10.3390/pr7040193
Google Scholar
[22]
B. Zheng, L. Qian, H. Yuan, D. Xiao, X. Yang, M.C. Paau, M.M. Choi, Preparation of gold nanoparticles on eggshell membrane and their biosensing application, Talanta 82 (2010) 177–183.
DOI: 10.1016/j.talanta.2010.04.014
Google Scholar
[23]
S.A. Afolalu, O.M. Ikumapayi, T.S. Ogedengbe, A. Adegbenjo, Tien-Chien Jen, Evaluation and analysis of an agro-based nano refrigerant to improve the performance of a domestic refrigeration system. Int. J. Heat Tech. 40 (2022) 1305–1310.
DOI: 10.18280/ijht.400525
Google Scholar
[24]
E. Akhayere, V. Adebayo, M. Adedeji, M. Abid, D. Kavaz, M. Dagbasi, Investigating the effects of nanorefrigerants in a cascaded vapor compression refrigeration cycle, Int. J. Energy Environ. Eng. 14 (2023) 601–612
DOI: 10.1007/s40095-022-00537-x
Google Scholar
[25]
S. Shahnazar, S. Bagheri, S.B. Abd Hamid, Enhancing lubricant properties by nanoparticle additives, Int. J. Hydrogen Energy 41 (2016) 3153–3170.
DOI: 10.1016/j.ijhydene.2015.12.040
Google Scholar
[26]
O.O. Ajayi, C. C. Aba-Onukaogu, E.Y. Salawu, F. T. Owoeye, D. K. Akinlabu, A. P. I. Popoola, S. A. Afolalu, A. A. Abioye, Effect of biomaterial (Citrullus Lanatus Peels) nanolubricant on the thermal performance and energy consumption of R600a in refrigeration system, Energy Tech: Miner. Met. Mater. Ser. (2019) 91 – 102.
DOI: 10.1007/978-3-030-06209-5_9
Google Scholar
[27]
A. S. Dalkilic, S. Wongwises, A performance comparison of vapour-compression refrigeration system using various alternative refrigerants, Int. Comm. Heat Mass Transf. 37 (2010) 1340–1349.
DOI: 10.1016/j.icheatmasstransfer.2010.07.006
Google Scholar
[28]
M. F. Nabil, W. H. Azmi, K. A, Hamid, N. N. M. Zawawi, G. Priyandoko, R. Mamat, Thermo-physical properties of hybrid nano fluids and hybrid nanolubricants: A comprehensive review on performance, Int. Comm. Heat Mass Transf. 83 (2017) 30–39.
DOI: 10.1016/j.icheatmasstransfer.2017.03.008
Google Scholar
[29]
A. Sarkar, J.P. Pandey, A. Singh, L. Tiwari, A. Kumar, A novel method of using refractive index as a tool for finding the quality of aqueous enzymatic extracted algae oil, Adv. Appl. Sci. Res. 6 (2015) 50–60.
Google Scholar
[30]
M. Ogbonnaya, O.O. Ajayi, M.A. Waheed, Influence of refrigerant type, nanoparticle's concentration and size on the performance and exergy efficiency of the vapour compression refrigeration system using Al2O3 based nanolubricant, J. Nanofluids 12 (2023) 712–722.
DOI: 10.1166/jon.2023.1953
Google Scholar
[31]
A. Senthilkumar, P.V. Abhishek, M. Adithyan, A. Arjun, Experimental investigation of CuO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system, Mater. Today: Proc. 45 (2021) 6083–6086.
DOI: 10.1016/j.matpr.2020.10.178
Google Scholar
[32]
R. Kaushik, L. Kundan, R.K. Sharma, Investigating the performance of nanorefrigerant (R134a + CuO)-based vapor compression cycle: a new scope, Heat Transf. Res. 52 (2021) 33–53.
DOI: 10.1615/heattransres.2021036516
Google Scholar