Room Temperature-Built Gas Sensors from Green Carbon Derivative: A Comparative Study between Pristine SnO2 and GO-SnO2 Nanocomposite

Article Preview

Abstract:

Room temperature-built gas sensors were fabricated from graphene oxide (GO), pristine and doped SnO2 nanostructures. The as-synthesized green carbon derivative (GO) nanomaterials were prepared from waste plastic precursor using Modified Hummer’s methodology. Pristine SnO2 and GO-SnO2 nanocomposite were synthesized employing a wet synthesis technique known as co-precipitation. The as-prepared nanoparticles were investigated for structural crystallographic and morphological features using X-ray diffractometry (XRD) and Transmission electron microscopy (TEM) analytical techniques. High-angle annular dark field (HAADF) and elemental quantifications of the nanopowders were investigated with the Energy dispersive X-ray spectroscopy (EDX). Textural features were determined with the assistance of Brunauer-Emmett-Teller (BET) analyzer. Thermogravimetric analysis (TGA) was performed to ascertain the material stability and degradability of the synthetic materials. Functional group and bond structure analysis was conducted using Fourier-transform infrared (FTIR) spectroscopy. Gas sensor devices were tested for responses towards CH4, H2, LPG, and CO2 gases at 20 ppm concentrations of each. GO-SnO2 nanocomposite sensing device showed optimal detection response towards the respective analyte gases with values of 5.00, 5.08, 4.90 and 3.41 respectively. The prepared nanocomposite showed stability and selectivity towards the target gases in an order of magnitude of H2 > CH4 > LPG > CO2. The optimal gas sensor device’s dynamic gas sensing response was ascribed to the GO doping effect which relatively increased its surface area (46.48 m2g-1) and absorption sites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-94

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Adavan Kiliyankil, B. Fugetsu, I. Sakata, Z. Wang, M. Endo, Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air, J. Colloid Interface Sci. 582 (2021) 950–960.

DOI: 10.1016/j.jcis.2020.08.100

Google Scholar

[2] T. Lomonaco, E. Manco, A. Corti, J. La Nasa, S. Ghimenti, D. Biagini, F. Di Francesco, F. Modugno, A. Ceccarini, R. Fuoco, V. Castelvetro, Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollution, J. Hazard. Mater. 394 (2020) 122596.

DOI: 10.1016/j.jhazmat.2020.122596

Google Scholar

[3] K. Rathi, K. Pal, Fabrication of MoSe2–Graphene Hybrid Nanoflakes for Toxic Gas Sensor with Tunable Sensitivity, Adv. Mater. Interfaces. 7 (2020) 1–13.

DOI: 10.1002/admi.202000140

Google Scholar

[4] V. Kumar, K. Rajput, D.R. Roy, Monolayer Bi2C3: A promising sensor for environmentally toxic NCGs with high sensitivity and selectivity, Appl. Surf. Sci. 534 (2020) 147609.

DOI: 10.1016/j.apsusc.2020.147609

Google Scholar

[5] S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review, Nano Energy. 79 (2021) 105369.

DOI: 10.1016/j.nanoen.2020.105369

Google Scholar

[6] E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review, Sensors Actuators, B Chem. 293 (2019) 183–209.

DOI: 10.1016/j.snb.2019.04.075

Google Scholar

[7] M. Sik Choi, J. Ahn, M. Young Kim, A. Mirzaei, S.M. Choi, D. Won Chun, C. Jin, K. Hyoung Lee, Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping, Appl. Surf. Sci. 565 (2021) 150493.

DOI: 10.1016/j.apsusc.2021.150493

Google Scholar

[8] A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229 (2018) 206–217.

DOI: 10.1016/j.mseb.2017.12.036

Google Scholar

[9] A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141.

DOI: 10.1016/j.ceramint.2016.06.145

Google Scholar

[10] C. Fan, J. Shi, Y. Zhang, W. Quan, X. Chen, J. Yang, M. Zeng, Z. Zhou, Y. Su, H. Wei, Z. Yang, Fast and recoverable NO2 detection achieved by assembling ZnO on Ti3C2Tx MXene nanosheets under UV illumination at room temperature, Nanoscale. 14 (2022) 3441–3451.

DOI: 10.1039/d1nr06838e

Google Scholar

[11] C. Liu, L. Wei, X. Yin, X. Pan, J. Hu, N. Li, J. Xu, J. Jiang, K. Wang, Synthesis of furfural from xylan in γ-valerolactone/molten salt hydrate biphasic system, Chem. Eng. J. 425 (2021) 1–10.

DOI: 10.1016/j.cej.2021.130608

Google Scholar

[12] S. Das, V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci. 66 (2014) 112–255.

DOI: 10.1016/j.pmatsci.2014.06.003

Google Scholar

[13] H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors Actuators, B Chem. 192 (2014) 607–627.

DOI: 10.1016/j.snb.2013.11.005

Google Scholar

[14] D.D. Trung, N.D. Cuong, K.Q. Trung, T.D. Nguyen, N. Van Toan, C.M. Hung, N. Van Hieu, Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor, J. Alloys Compd. 735 (2018) 787–794.

DOI: 10.1016/j.jallcom.2017.11.161

Google Scholar

[15] Y. Xiong, Z. Zhu, D. Ding, W. Lu, Q. Xue, Multi-shelled ZnCo 2 O 4 yolk-shell spheres for high-performance acetone gas sensor, Appl. Surf. Sci. 443 (2018) 114–121.

DOI: 10.1016/j.apsusc.2018.02.189

Google Scholar

[16] Y. Han, Y. Ma, Y. Liu, S. Xu, X. Chen, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature, Appl. Surf. Sci. 493 (2019) 613–619.

DOI: 10.1016/j.apsusc.2019.07.052

Google Scholar

[17] P.H. Phuoc, N.N. Viet, L.V. Thong, C.M. Hung, N.D. Hoa, N. Van Duy, H.S. Hong, N. Van Hieu, Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection, Sensors Actuators, B Chem. 334 (2021) 129606.

DOI: 10.1016/j.snb.2021.129606

Google Scholar

[18] V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, S.K. Gupta, J. V. Yakhmi, Copper doped SnO2 nanowires as highly sensitive H2S gas sensor, Sensors Actuators, B Chem. 138 (2009) 587–590.

DOI: 10.1016/j.snb.2009.02.053

Google Scholar

[19] P.H. Phuoc, C.M. Hung, N. Van Toan, N. Van Duy, N.D. Hoa, N. Van Hieu, One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection, Sensors Actuators, A Phys. 303 (2020) 111722.

DOI: 10.1016/j.sna.2019.111722

Google Scholar

[20] I.S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sensors Actuators, B Chem. 142 (2009) 105–110.

DOI: 10.1016/j.snb.2009.07.052

Google Scholar

[21] R. Zhang, Z. Xu, T. Zhou, T. Fei, R. Wang, T. Zhang, Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures, J. Colloid Interface Sci. 557 (2019) 673–682.

DOI: 10.1016/j.jcis.2019.09.073

Google Scholar

[22] F. Chen, Y. Zhang, D. Wang, T. Wang, J. Zhang, D. Zhang, High performance ammonia gas sensor based on electrospinned Co3O4 nanofibers decorated with hydrothermally synthesized MoTe2 nanoparticles, J. Alloys Compd. 923 (2022) 166355.

DOI: 10.1016/j.jallcom.2022.166355

Google Scholar

[23] Y. Xiong, W. Liu, K. Wu, T. Liu, Y. Chen, X. Wang, J. Tian, Constructing ultrathin defective Co3O4/MoS2 nanosheets based 2D/2D heterojunction toward room temperature NH3 detection, J. Alloys Compd. 927 (2022) 166962.

DOI: 10.1016/j.jallcom.2022.166962

Google Scholar

[24] Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes, J. Alloys Compd. 860 (2021) 158252.

DOI: 10.1016/j.jallcom.2020.158252

Google Scholar

[25] C.C. Villarreal, T. Pham, P. Ramnani, A. Mulchandani, Carbon allotropes as sensors for environmental monitoring, Curr. Opin. Electrochem. 3 (2017) 106–113.

DOI: 10.1016/j.coelec.2017.07.004

Google Scholar

[26] G.J. Thangamani, K. Deshmukh, T. Kovářík, N.A. Nambiraj, D. Ponnamma, K.K. Sadasivuni, H.P.S.A. Khalil, S.K.K. Pasha, Graphene oxide nanocomposites based room temperature gas sensors: A review, Chemosphere. 280 (2021).

DOI: 10.1016/j.chemosphere.2021.130641

Google Scholar

[27] Ellen Macarthur Foundation; World Economic Forum; McKinsey&Co, The New Plastic Economy: Rethinking the Future of Plastics, Ellen Macarthur Found. (2016) 1–120.

Google Scholar

[28] C.J. Rhodes, Plastic pollution and potential solutions, Sci. Prog. 101 (2018) 207–260.

DOI: 10.3184/003685018X15294876706211

Google Scholar

[29] K. Mensah, H. Mahmoud, M. Fujii, H. Shokry, Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization, J. Water Process Eng. 45 (2022) 102512.

DOI: 10.1016/j.jwpe.2021.102512

Google Scholar

[30] M. Ghorbani, H. Abdizadeh, M. Taheri, M.R. Golobostanfard, Enhanced photoelectrochemical water splitting in hierarchical porous ZnO/Reduced graphene oxide nanocomposite synthesized by sol-gel method, Int. J. Hydrogen Energy. 43 (2018) 7754–7763.

DOI: 10.1016/j.ijhydene.2018.03.052

Google Scholar

[31] X. Zhang, Y.C. Zhang, L.X. Ma, One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid, Sensors Actuators, B Chem. 227 (2016) 488–496.

DOI: 10.1016/j.snb.2015.12.073

Google Scholar

[32] Y.T. Li, J.M. Xu, Z.J. Tang, T.T. Xu, X.J. Li, Nearly white light photoluminescence from ZnO/rGO nanocomposite prepared by a one-step hydrothermal method, J. Alloys Compd. 715 (2017) 122–128.

DOI: 10.1016/j.jallcom.2017.04.286

Google Scholar

[33] Y. Xue, W. Sun, P. Shao, Y. Yuan, F. Cui, W. Shi, Degradation of contaminants of PPCPs by photocatalysis for water purification: Kinetics, mechanisms, and cytotoxicity analysis, Chem. Eng. J. 454 (2023) 140505.

DOI: 10.1016/j.cej.2022.140505

Google Scholar

[34] F.C. Romeiro, M.A. Rodrigues, L.A.J. Silva, A.C. Catto, L.F. da Silva, E. Longo, E. Nossol, R.C. Lima, rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method, Appl. Surf. Sci. 423 (2017) 743–751.

DOI: 10.1016/j.apsusc.2017.06.221

Google Scholar

[35] S.S. Low, M.T.T. Tan, H.S. Loh, P.S. Khiew, W.S. Chiu, Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor, Anal. Chim. Acta. 903 (2016) 131–141.

DOI: 10.1016/j.aca.2015.11.006

Google Scholar

[36] Y. Komatsu, A. Sciazko, N. Shikazono, Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells, J. Power Sources. 485 (2021) 229317.

DOI: 10.1016/j.jpowsour.2020.229317

Google Scholar

[37] P.T. Shibeshi, D. Parajuli, N. Murali, Study of Fe-doped and glucose-capped CeO2 nanoparticles synthesized by co-precipitation method, Chem. Phys. 561 (2022) 111617.

DOI: 10.1016/j.chemphys.2022.111617

Google Scholar

[38] W. Guo, B. Zhao, Q. Zhou, Y. He, Z. Wang, N. Radacsi, Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde, ACS Omega. 4 (2019) 10252–10262.

DOI: 10.1021/acsomega.9b00734

Google Scholar

[39] S. Asaithambi, P. Sakthivel, M. Karuppaiah, V. Balaji, R. Yuvakkumar, G. Ravi, Visible light induced photocatalytic performance of Mn-SnO2@ZnO nanocomposite for high efficient cationic dye degradation, J. Mater. Sci. Mater. Electron. 32 (2021) 22168–22186.

DOI: 10.1007/s10854-021-06692-x

Google Scholar

[40] Y. Shen, G. Li, S. Zhao, J. Bai, Z. Liu, B. Cui, D. Wei, D. Meng, F. Meng, Synthesis of rGO-SnO2 nanocomposites using GO as an alkali-resistant substrate for high-performance detection of NO2, Sensors Actuators B Chem. 388 (2023) 133804.

DOI: 10.1016/j.snb.2023.133804

Google Scholar

[41] M.S. Choi, J.H. Bang, A. Mirzaei, H.G. Na, Y.J. Kwon, S.Y. Kang, S.W. Choi, S.S. Kim, H.W. Kim, Dual sensitization of MWCNTs by co-decoration with p- and n-type metal oxide nanoparticles, Sensors Actuators, B Chem. 264 (2018) 150–163.

DOI: 10.1016/j.snb.2018.02.179

Google Scholar

[42] J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sensors Actuators, B Chem. 274 (2018) 356–369.

DOI: 10.1016/j.snb.2018.07.158

Google Scholar

[43] H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nanomaterials, Beni-Suef Univ. J. Basic Appl. Sci. 3 (2014) 216–221.

DOI: 10.1016/j.bjbas.2014.10.007

Google Scholar

[44] H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, A. Raafat, Fabrication and characterization of gas sensor micro-arrays, Sens. Bio-Sensing Res. 1 (2014) 34–40.

DOI: 10.1016/j.sbsr.2014.04.001

Google Scholar

[45] A.G. Habte, F.G. Hone, F.B. Dejene, Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles, Phys. B Condens. Matter. 580 (2020) 411832.

DOI: 10.1016/j.physb.2019.411832

Google Scholar

[46] J. Mangaiyarkkarasi, V. Meenakumari, N. Thenmozhi, Microstructural and morphological insight of wide band gap SnO2 towards gas sensor applications, Sadhana - Acad. Proc. Eng. Sci. 48 (2023).

DOI: 10.1007/s12046-023-02138-8

Google Scholar

[47] T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egypt. J. Basic Appl. Sci. 4 (2017) 74–79.

DOI: 10.1016/j.ejbas.2016.11.002

Google Scholar

[48] T. Zhang, D. Zhang, Mars Rocket Propulsion System, 34 (2018) 44135.

Google Scholar

[49] V. Singh, A. Banotra, S. Khan, A. Singh, S. Goutam, Pristine SnO2 and SnO2/rGO nanocomposites: Synthesis, microstructural, optical and electrical characteristics for potential sensing applications, Diam. Relat. Mater. 133 (2023) 109704.

DOI: 10.1016/j.diamond.2023.109704

Google Scholar

[50] E. Eze, A.M. Omer, A.H. Hassanin, A.S. Eltaweil, M.E. El-Khouly, Efficient removal of noxious methylene dye by low-cost and reusable composite beads based on cellulose acetate/banana pseudo-stem fiber, Biomass Convers. Biorefinery. (2023).

DOI: 10.1007/s13399-023-04342-2

Google Scholar

[51] S.P. Lonkar, V. Pillai, A. Abdala, Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity, Appl. Surf. Sci. 465 (2019) 1107–1113.

DOI: 10.1016/j.apsusc.2018.09.264

Google Scholar

[52] S.P. Lonkar, V. Pillai, A. Abdala, V. Mittal, In situ formed graphene/ZnO nanostructured composites for low temperature hydrogen sulfide removal from natural gas, RSC Adv. 6 (2016) 81142–81150.

DOI: 10.1039/c6ra08763a

Google Scholar

[53] Y. Zhao, H. Li, Y. Li, Y. Ma, H. Yang, H. Liu, X. Ren, H. Zhao, Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing, Sensors Actuators, B Chem. 346 (2021) 130452.

DOI: 10.1016/j.snb.2021.130452

Google Scholar

[54] D.S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P.S. Reddy, M. V. Ramana Reddy, Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method, J. Asian Ceram. Soc. 8 (2020) 605–614.

DOI: 10.1080/21870764.2020.1769820

Google Scholar

[55] S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun, T.H. Han, S.O. Kim, Graphene oxide liquid crystals: A frontier 2D soft material for graphene-based functional materials, Chem. Soc. Rev. 47 (2018) 6013–6045.

DOI: 10.1039/c8cs00299a

Google Scholar

[56] H. Si, L. Sun, Y. Zhang, Y. Zhang, L. Bai, Y. Zhang, Carbon-coated MoO 2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors, Dalt. Trans. 48 (2019) 285–295.

DOI: 10.1039/c8dt03665a

Google Scholar

[57] M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater. 393 (2020) 122383. https://doi.org/.

DOI: 10.1016/j.jhazmat.2020.122383

Google Scholar

[58] A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites, Ceram. Int. 42 (2016) 18974–18982.

DOI: 10.1016/j.ceramint.2016.09.052

Google Scholar

[59] Q. Feng, X. Li, J. Wang, Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2composite based sensor, Sensors Actuators, B Chem. 243 (2017) 1115–1126.

DOI: 10.1016/j.snb.2016.12.075

Google Scholar