[1]
V. Adavan Kiliyankil, B. Fugetsu, I. Sakata, Z. Wang, M. Endo, Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air, J. Colloid Interface Sci. 582 (2021) 950–960.
DOI: 10.1016/j.jcis.2020.08.100
Google Scholar
[2]
T. Lomonaco, E. Manco, A. Corti, J. La Nasa, S. Ghimenti, D. Biagini, F. Di Francesco, F. Modugno, A. Ceccarini, R. Fuoco, V. Castelvetro, Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollution, J. Hazard. Mater. 394 (2020) 122596.
DOI: 10.1016/j.jhazmat.2020.122596
Google Scholar
[3]
K. Rathi, K. Pal, Fabrication of MoSe2–Graphene Hybrid Nanoflakes for Toxic Gas Sensor with Tunable Sensitivity, Adv. Mater. Interfaces. 7 (2020) 1–13.
DOI: 10.1002/admi.202000140
Google Scholar
[4]
V. Kumar, K. Rajput, D.R. Roy, Monolayer Bi2C3: A promising sensor for environmentally toxic NCGs with high sensitivity and selectivity, Appl. Surf. Sci. 534 (2020) 147609.
DOI: 10.1016/j.apsusc.2020.147609
Google Scholar
[5]
S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review, Nano Energy. 79 (2021) 105369.
DOI: 10.1016/j.nanoen.2020.105369
Google Scholar
[6]
E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: A review, Sensors Actuators, B Chem. 293 (2019) 183–209.
DOI: 10.1016/j.snb.2019.04.075
Google Scholar
[7]
M. Sik Choi, J. Ahn, M. Young Kim, A. Mirzaei, S.M. Choi, D. Won Chun, C. Jin, K. Hyoung Lee, Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping, Appl. Surf. Sci. 565 (2021) 150493.
DOI: 10.1016/j.apsusc.2021.150493
Google Scholar
[8]
A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229 (2018) 206–217.
DOI: 10.1016/j.mseb.2017.12.036
Google Scholar
[9]
A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141.
DOI: 10.1016/j.ceramint.2016.06.145
Google Scholar
[10]
C. Fan, J. Shi, Y. Zhang, W. Quan, X. Chen, J. Yang, M. Zeng, Z. Zhou, Y. Su, H. Wei, Z. Yang, Fast and recoverable NO2 detection achieved by assembling ZnO on Ti3C2Tx MXene nanosheets under UV illumination at room temperature, Nanoscale. 14 (2022) 3441–3451.
DOI: 10.1039/d1nr06838e
Google Scholar
[11]
C. Liu, L. Wei, X. Yin, X. Pan, J. Hu, N. Li, J. Xu, J. Jiang, K. Wang, Synthesis of furfural from xylan in γ-valerolactone/molten salt hydrate biphasic system, Chem. Eng. J. 425 (2021) 1–10.
DOI: 10.1016/j.cej.2021.130608
Google Scholar
[12]
S. Das, V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci. 66 (2014) 112–255.
DOI: 10.1016/j.pmatsci.2014.06.003
Google Scholar
[13]
H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors Actuators, B Chem. 192 (2014) 607–627.
DOI: 10.1016/j.snb.2013.11.005
Google Scholar
[14]
D.D. Trung, N.D. Cuong, K.Q. Trung, T.D. Nguyen, N. Van Toan, C.M. Hung, N. Van Hieu, Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor, J. Alloys Compd. 735 (2018) 787–794.
DOI: 10.1016/j.jallcom.2017.11.161
Google Scholar
[15]
Y. Xiong, Z. Zhu, D. Ding, W. Lu, Q. Xue, Multi-shelled ZnCo 2 O 4 yolk-shell spheres for high-performance acetone gas sensor, Appl. Surf. Sci. 443 (2018) 114–121.
DOI: 10.1016/j.apsusc.2018.02.189
Google Scholar
[16]
Y. Han, Y. Ma, Y. Liu, S. Xu, X. Chen, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature, Appl. Surf. Sci. 493 (2019) 613–619.
DOI: 10.1016/j.apsusc.2019.07.052
Google Scholar
[17]
P.H. Phuoc, N.N. Viet, L.V. Thong, C.M. Hung, N.D. Hoa, N. Van Duy, H.S. Hong, N. Van Hieu, Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection, Sensors Actuators, B Chem. 334 (2021) 129606.
DOI: 10.1016/j.snb.2021.129606
Google Scholar
[18]
V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, S.K. Gupta, J. V. Yakhmi, Copper doped SnO2 nanowires as highly sensitive H2S gas sensor, Sensors Actuators, B Chem. 138 (2009) 587–590.
DOI: 10.1016/j.snb.2009.02.053
Google Scholar
[19]
P.H. Phuoc, C.M. Hung, N. Van Toan, N. Van Duy, N.D. Hoa, N. Van Hieu, One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection, Sensors Actuators, A Phys. 303 (2020) 111722.
DOI: 10.1016/j.sna.2019.111722
Google Scholar
[20]
I.S. Hwang, J.K. Choi, S.J. Kim, K.Y. Dong, J.H. Kwon, B.K. Ju, J.H. Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sensors Actuators, B Chem. 142 (2009) 105–110.
DOI: 10.1016/j.snb.2009.07.052
Google Scholar
[21]
R. Zhang, Z. Xu, T. Zhou, T. Fei, R. Wang, T. Zhang, Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures, J. Colloid Interface Sci. 557 (2019) 673–682.
DOI: 10.1016/j.jcis.2019.09.073
Google Scholar
[22]
F. Chen, Y. Zhang, D. Wang, T. Wang, J. Zhang, D. Zhang, High performance ammonia gas sensor based on electrospinned Co3O4 nanofibers decorated with hydrothermally synthesized MoTe2 nanoparticles, J. Alloys Compd. 923 (2022) 166355.
DOI: 10.1016/j.jallcom.2022.166355
Google Scholar
[23]
Y. Xiong, W. Liu, K. Wu, T. Liu, Y. Chen, X. Wang, J. Tian, Constructing ultrathin defective Co3O4/MoS2 nanosheets based 2D/2D heterojunction toward room temperature NH3 detection, J. Alloys Compd. 927 (2022) 166962.
DOI: 10.1016/j.jallcom.2022.166962
Google Scholar
[24]
Q. Mi, D. Zhang, X. Zhang, D. Wang, Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes, J. Alloys Compd. 860 (2021) 158252.
DOI: 10.1016/j.jallcom.2020.158252
Google Scholar
[25]
C.C. Villarreal, T. Pham, P. Ramnani, A. Mulchandani, Carbon allotropes as sensors for environmental monitoring, Curr. Opin. Electrochem. 3 (2017) 106–113.
DOI: 10.1016/j.coelec.2017.07.004
Google Scholar
[26]
G.J. Thangamani, K. Deshmukh, T. Kovářík, N.A. Nambiraj, D. Ponnamma, K.K. Sadasivuni, H.P.S.A. Khalil, S.K.K. Pasha, Graphene oxide nanocomposites based room temperature gas sensors: A review, Chemosphere. 280 (2021).
DOI: 10.1016/j.chemosphere.2021.130641
Google Scholar
[27]
Ellen Macarthur Foundation; World Economic Forum; McKinsey&Co, The New Plastic Economy: Rethinking the Future of Plastics, Ellen Macarthur Found. (2016) 1–120.
Google Scholar
[28]
C.J. Rhodes, Plastic pollution and potential solutions, Sci. Prog. 101 (2018) 207–260.
DOI: 10.3184/003685018X15294876706211
Google Scholar
[29]
K. Mensah, H. Mahmoud, M. Fujii, H. Shokry, Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization, J. Water Process Eng. 45 (2022) 102512.
DOI: 10.1016/j.jwpe.2021.102512
Google Scholar
[30]
M. Ghorbani, H. Abdizadeh, M. Taheri, M.R. Golobostanfard, Enhanced photoelectrochemical water splitting in hierarchical porous ZnO/Reduced graphene oxide nanocomposite synthesized by sol-gel method, Int. J. Hydrogen Energy. 43 (2018) 7754–7763.
DOI: 10.1016/j.ijhydene.2018.03.052
Google Scholar
[31]
X. Zhang, Y.C. Zhang, L.X. Ma, One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid, Sensors Actuators, B Chem. 227 (2016) 488–496.
DOI: 10.1016/j.snb.2015.12.073
Google Scholar
[32]
Y.T. Li, J.M. Xu, Z.J. Tang, T.T. Xu, X.J. Li, Nearly white light photoluminescence from ZnO/rGO nanocomposite prepared by a one-step hydrothermal method, J. Alloys Compd. 715 (2017) 122–128.
DOI: 10.1016/j.jallcom.2017.04.286
Google Scholar
[33]
Y. Xue, W. Sun, P. Shao, Y. Yuan, F. Cui, W. Shi, Degradation of contaminants of PPCPs by photocatalysis for water purification: Kinetics, mechanisms, and cytotoxicity analysis, Chem. Eng. J. 454 (2023) 140505.
DOI: 10.1016/j.cej.2022.140505
Google Scholar
[34]
F.C. Romeiro, M.A. Rodrigues, L.A.J. Silva, A.C. Catto, L.F. da Silva, E. Longo, E. Nossol, R.C. Lima, rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method, Appl. Surf. Sci. 423 (2017) 743–751.
DOI: 10.1016/j.apsusc.2017.06.221
Google Scholar
[35]
S.S. Low, M.T.T. Tan, H.S. Loh, P.S. Khiew, W.S. Chiu, Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor, Anal. Chim. Acta. 903 (2016) 131–141.
DOI: 10.1016/j.aca.2015.11.006
Google Scholar
[36]
Y. Komatsu, A. Sciazko, N. Shikazono, Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells, J. Power Sources. 485 (2021) 229317.
DOI: 10.1016/j.jpowsour.2020.229317
Google Scholar
[37]
P.T. Shibeshi, D. Parajuli, N. Murali, Study of Fe-doped and glucose-capped CeO2 nanoparticles synthesized by co-precipitation method, Chem. Phys. 561 (2022) 111617.
DOI: 10.1016/j.chemphys.2022.111617
Google Scholar
[38]
W. Guo, B. Zhao, Q. Zhou, Y. He, Z. Wang, N. Radacsi, Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde, ACS Omega. 4 (2019) 10252–10262.
DOI: 10.1021/acsomega.9b00734
Google Scholar
[39]
S. Asaithambi, P. Sakthivel, M. Karuppaiah, V. Balaji, R. Yuvakkumar, G. Ravi, Visible light induced photocatalytic performance of Mn-SnO2@ZnO nanocomposite for high efficient cationic dye degradation, J. Mater. Sci. Mater. Electron. 32 (2021) 22168–22186.
DOI: 10.1007/s10854-021-06692-x
Google Scholar
[40]
Y. Shen, G. Li, S. Zhao, J. Bai, Z. Liu, B. Cui, D. Wei, D. Meng, F. Meng, Synthesis of rGO-SnO2 nanocomposites using GO as an alkali-resistant substrate for high-performance detection of NO2, Sensors Actuators B Chem. 388 (2023) 133804.
DOI: 10.1016/j.snb.2023.133804
Google Scholar
[41]
M.S. Choi, J.H. Bang, A. Mirzaei, H.G. Na, Y.J. Kwon, S.Y. Kang, S.W. Choi, S.S. Kim, H.W. Kim, Dual sensitization of MWCNTs by co-decoration with p- and n-type metal oxide nanoparticles, Sensors Actuators, B Chem. 264 (2018) 150–163.
DOI: 10.1016/j.snb.2018.02.179
Google Scholar
[42]
J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sensors Actuators, B Chem. 274 (2018) 356–369.
DOI: 10.1016/j.snb.2018.07.158
Google Scholar
[43]
H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nanomaterials, Beni-Suef Univ. J. Basic Appl. Sci. 3 (2014) 216–221.
DOI: 10.1016/j.bjbas.2014.10.007
Google Scholar
[44]
H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, A. Raafat, Fabrication and characterization of gas sensor micro-arrays, Sens. Bio-Sensing Res. 1 (2014) 34–40.
DOI: 10.1016/j.sbsr.2014.04.001
Google Scholar
[45]
A.G. Habte, F.G. Hone, F.B. Dejene, Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles, Phys. B Condens. Matter. 580 (2020) 411832.
DOI: 10.1016/j.physb.2019.411832
Google Scholar
[46]
J. Mangaiyarkkarasi, V. Meenakumari, N. Thenmozhi, Microstructural and morphological insight of wide band gap SnO2 towards gas sensor applications, Sadhana - Acad. Proc. Eng. Sci. 48 (2023).
DOI: 10.1007/s12046-023-02138-8
Google Scholar
[47]
T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egypt. J. Basic Appl. Sci. 4 (2017) 74–79.
DOI: 10.1016/j.ejbas.2016.11.002
Google Scholar
[48]
T. Zhang, D. Zhang, Mars Rocket Propulsion System, 34 (2018) 44135.
Google Scholar
[49]
V. Singh, A. Banotra, S. Khan, A. Singh, S. Goutam, Pristine SnO2 and SnO2/rGO nanocomposites: Synthesis, microstructural, optical and electrical characteristics for potential sensing applications, Diam. Relat. Mater. 133 (2023) 109704.
DOI: 10.1016/j.diamond.2023.109704
Google Scholar
[50]
E. Eze, A.M. Omer, A.H. Hassanin, A.S. Eltaweil, M.E. El-Khouly, Efficient removal of noxious methylene dye by low-cost and reusable composite beads based on cellulose acetate/banana pseudo-stem fiber, Biomass Convers. Biorefinery. (2023).
DOI: 10.1007/s13399-023-04342-2
Google Scholar
[51]
S.P. Lonkar, V. Pillai, A. Abdala, Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity, Appl. Surf. Sci. 465 (2019) 1107–1113.
DOI: 10.1016/j.apsusc.2018.09.264
Google Scholar
[52]
S.P. Lonkar, V. Pillai, A. Abdala, V. Mittal, In situ formed graphene/ZnO nanostructured composites for low temperature hydrogen sulfide removal from natural gas, RSC Adv. 6 (2016) 81142–81150.
DOI: 10.1039/c6ra08763a
Google Scholar
[53]
Y. Zhao, H. Li, Y. Li, Y. Ma, H. Yang, H. Liu, X. Ren, H. Zhao, Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing, Sensors Actuators, B Chem. 346 (2021) 130452.
DOI: 10.1016/j.snb.2021.130452
Google Scholar
[54]
D.S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P.S. Reddy, M. V. Ramana Reddy, Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method, J. Asian Ceram. Soc. 8 (2020) 605–614.
DOI: 10.1080/21870764.2020.1769820
Google Scholar
[55]
S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun, T.H. Han, S.O. Kim, Graphene oxide liquid crystals: A frontier 2D soft material for graphene-based functional materials, Chem. Soc. Rev. 47 (2018) 6013–6045.
DOI: 10.1039/c8cs00299a
Google Scholar
[56]
H. Si, L. Sun, Y. Zhang, Y. Zhang, L. Bai, Y. Zhang, Carbon-coated MoO 2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors, Dalt. Trans. 48 (2019) 285–295.
DOI: 10.1039/c8dt03665a
Google Scholar
[57]
M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater. 393 (2020) 122383. https://doi.org/.
DOI: 10.1016/j.jhazmat.2020.122383
Google Scholar
[58]
A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites, Ceram. Int. 42 (2016) 18974–18982.
DOI: 10.1016/j.ceramint.2016.09.052
Google Scholar
[59]
Q. Feng, X. Li, J. Wang, Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2composite based sensor, Sensors Actuators, B Chem. 243 (2017) 1115–1126.
DOI: 10.1016/j.snb.2016.12.075
Google Scholar