[1]
S. Naama, T. Hadjersi, A .Keffous, G. Nezzal, CO2 gas sensor based on silicon nanowires modified with metal nanoparticles, Mater. Sci. Semicond. Process, 38 (2015) 367-371
DOI: 10.1016/j.mssp.2015.01.027
Google Scholar
[2]
G. Farid, R. Amade-Rovira, R. Ospina, E. Bertran-Serra, Surface modification of silicon nanowires via drop-casting for high-performance Li-ion battery electrodes: SiNWs decorated with molybdenum oxide nanoparticles, J. Energy Storage. 78 (2024) 110104
DOI: 10.1016/j.est.2023.110104
Google Scholar
[3]
S. Yogi, A. Kumar, P. Kumar, V. Kumar, M. Zulfequar, V. Kumar Jain, Trace level sensitivity and selectivity of room temperature NH3 gas sensors based on RGO/ZnO@ SiNWs heterostructure, Physica E Low Dimens. Syst. Nanostruct. 157 (2024) 115864
DOI: 10.1016/j.physe.2023.115864
Google Scholar
[4]
R. Plugaru, E. Fakhri, C. Romanitan, I. Mihalache, G. Craciun, N. Plugaru, H.Ö. Árnason, M.T. Sultan, G.A. Nemnes, S. Ingvarsson, H.G. Svavarsson, A. Manolescu, Structure and electrical behavior of silicon nanowires prepared by MACE process, Surf. Interfaces. 33 (2022) 102167
DOI: 10.1016/j.surfin.2022.102167
Google Scholar
[5]
X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77 (2000) 2572-2574
DOI: 10.1063/1.1319191
Google Scholar
[6]
M. Naffeti, M.A. Zaïbi, C. Nefzi, A. V. García-Arias, R. Chtourou, P. A. Postigo, Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowiresEnviron. Technol. Innov. 30 (2023) 103133
DOI: 10.1016/j.eti.2023.103133
Google Scholar
[7]
S. Lian, C. H. A Tsang, Z. Kang, Y. Liu, N. Wong, S.-T. Lee, Hydrogen-terminated silicon nanowire photocatalysis: benzene oxidation and methyl red decomposition, Mater. Res. Bull. 46 (2011), 2441–2444
DOI: 10.1016/j.materresbull.2011.08.027
Google Scholar
[8]
R. Ghosh, J. Ghosh, R. Das, L.P.L. Mawlong, K.K. Paul, P.K. Giri, Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications, J. Colloid Interface Sci. 532 (2018) 464–473
DOI: 10.1016/j.jcis.2018.07.123
Google Scholar
[9]
R. Ghosh, P. K. Giri, Silicon nanowire heterostructures for advanced energy and environmental applications: a review, Nanotechnology 28 (2016)1012001
DOI: 10.1088/0957-4484/28/1/012001
Google Scholar
[10]
J. Ben Naceur, R. B. Zaghouani , M. Amlouk , M. Ali. Zaabi, R. Chtourou, Hydrothermal synthesis of MoS2-decorated silicon nanowires heterostructure with enhanced performance of photocatalytic activity under visible light, Inorg. Chem. Commun. 147 (2023) 110270
DOI: 10.1016/j.inoche.2022.110270
Google Scholar
[11]
L. Chen, L. Peng, T. Renren, L. Feifei, L. Jing, L. Jinzhe, Z. Xin, L. Jiayi, G. Ying-Ying, Enhanced photocathode performance and stability for solar-powered hydrogen production through SiNWs@NC composite, Mater. Lett 357 (2024) 135719
DOI: 10.1016/j.matlet.2023.135719
Google Scholar
[12]
F. Lin, R. Tian, P. Dong, G. Jiang, F. He, S. Wang, R. Fu, C. Zhao, Ying-Ying Gu, S. Wang, Defect-rich MoS2/NiS2 nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production, J. Colloid Interface Sci 631 (2023) 133-142
DOI: 10.1016/j.jcis.2022.10.131
Google Scholar
[13]
W. Shen, B. Wu, F. Liao, B. Jiang, M. Shao, Int. Optimizing the hydrogen evolution reaction by shrinking Pt amount in Pt-Ag/SiNW nanocomposites, J. Hydrogen Energy.42 (2017)15024-15030
DOI: 10.1016/j.ijhydene.2017.03.110
Google Scholar
[14]
W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction, Nano Energy. 28 (2016) 29-43
DOI: 10.1016/j.nanoen.2016.08.027
Google Scholar
[15]
M. K. Sahoo , S. P. Muduli, P. Kale, Interdependence of morphological attributes and optoelectronic properties of porous silicon-nanowires, J Mater Sci: Mater Electron 34 (2023) 1275
DOI: 10.1007/s10854-023-11314-9
Google Scholar
[16]
S. Ktifa, M. Rahmani, Strong enhancement of the optical properties of SiNWs by the deposition of snowball-like V2O5 nanoparticles, Optical Materials142 (2023) 114144
DOI: 10.1016/j.optmat.2023.114144
Google Scholar
[17]
F. Ghulam, A-R. Roger, O. Rogelio, B-S. Enric, Surface modification of silicon nanowires via drop-casting for high-performance Li-ion battery electrodes: SiNWs decorated with molybdenum oxide nanoparticles, J. Energy Storage. 78 (2024) 110104.
DOI: 10.1016/j.est.2023.110104
Google Scholar
[18]
Q. Zhou, M. Bao, X. Ni, A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@NiO electrode for high-performance supercapacitor, Surf. Coat. Technol. 406 (2021)126660
DOI: 10.1016/j.surfcoat.2020.126660
Google Scholar
[19]
X. Zhang, Y. Liu, C. Yao, J. Niu, H. Li, C. Xie, Facile and stable fabrication of wafer-scale, ultra-black c-silicon with 3D nano/micro hybrid structures for solar cells, Nanoscale Adv. 5 (2023) 142-152
DOI: 10.1039/d2na00637e
Google Scholar
[20]
X. Liu, H. Zhang, Z. Huang, Z. Cheng, T. Li, A highly sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) using a peptide-functionalized silicon nanowire array sensor, Anal. Methods, 15 (2023) 2082-2087
DOI: 10.1039/d3ay00169e
Google Scholar
[21]
H. Saidi, T. Hidouri, F. Saidi and A. Bouazizi, Effect of etching time and illumination on optical properties of SiNWs elaborated by Metal Assisted Chemical Etching (MACE) for organic photovoltaic applications, Superlattices Microstruct. 85 (2015) 925-930
DOI: 10.1016/j.spmi.2015.07.012
Google Scholar
[22]
A. Backes, U. Schmid, Impact of doping level on the metal assisted chemical etching of p-type silicon, Sens. Actuator B-Chem. 193 (2014) 883-887
DOI: 10.1016/j.snb.2013.11.009
Google Scholar
[23]
S-C. Shiu, S-B. Lin, S-C. Hung, C-F. Lin, Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching, Appl. Surf. Sci 257 (2011) 1829-1834
DOI: 10.1016/j.apsusc.2010.08.086
Google Scholar
[24]
S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu and F. Wei, Recent Development of Polydopamine: An Emerged Soft Matter for Surface Modification and Biomedical Applications, Nanoscale Res. Lett. 9 (2014) 196
Google Scholar
[25]
W-K. To, C-H. Tsang, H-H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching,Nano. Lett. 11 (2011) 5252-5258
DOI: 10.1021/nl202674t
Google Scholar
[26]
S. Naama, T. Hadjersi. A. Larabi. G. Nezzal, Effect of Silicon Wafer Resistivity on Morphology and Wettability of Silicon Nanowires Arrays, Silicon 13 (2021) 893–899
DOI: 10.1007/s12633-020-00511-4
Google Scholar
[27]
H. Li, S. Kato, T. Soga, Etching rate of silicon nanowires with highly doped silicon during metal-assisted chemical etching, Mater. Res. Express 9 (2022) 115007
DOI: 10.1088/2053-1591/aca008
Google Scholar
[28]
S. Lamrani, A. Guittoum, R. Schäfer, M. Hemmous, V. Neu, S. Pofahl, T. Hadjersi , N. Benbrahim, Morphology, structure and magnetic study of permalloy films electroplated on silicon nanowires, J. J. Magn. Magn. Mater. 396 (2015) 263–267
DOI: 10.1016/j.jmmm.2015.07.111
Google Scholar
[29]
M. Ifires, T. Hadjersi, R. Chegroune, S. Lamrani, M. Fatsah, M. Mebarki, A. Manseri, One-step electrodeposition of superhydrophobic NiO-Co(OH)2 urchinlike structures on Si nanowires as photocatalyst for RhB degradation under visible light J. Alloys Compd. 774 (2019) 908–917
DOI: 10.1016/j.jallcom.2018.10.029
Google Scholar
[30]
W. Long, H. Li, B. Yang, N. Huang, L. Liu, Z. Gai, X. Jiang, Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling, J. Mater. Sci. Technol. 48 (2020) 1-8
DOI: 10.1016/j.jmst.2019.10.040
Google Scholar
[31]
T. Liyanage, A. Z. Qamar and G. Slaughter, Application of Nanomaterials for Chemical and Biological Sensors: A Review, IEEE Sens. J. 21 (2021) 12407-12425
DOI: 10.1109/jsen.2020.3032952
Google Scholar
[32]
L. J. Wan, W. L. Gong, K. W. Jiang, H. L. Li, B. R. Tao, Preparation and surface modification of silicon nanowires under normal conditions, J. Appl. Surf. Sci. 254 (2008) 4899
DOI: 10.1016/j.apsusc.2008.01.142
Google Scholar
[33]
A. H. Chiou , T-C. Chien, C-K. Su, J-F. Lin, C-Y Hsu, The effect of differently sized ag catalysts on the fabrication of a silicon nanowire array using ag-assisted electroless etching, Curr. Appl. Phys.13 (2013) 717-724
DOI: 10.1016/j.cap.2012.11.011
Google Scholar
[34]
O. Kuntyi, G. Zozulya, M. Shepida, Nano/Micro-Structured Materials and Nano-Objects: Synthesis, Morphology, and Applications 2021, Adv. Mater. Sci. Eng (2022) 1482877
Google Scholar
[35]
M. Naffeti, P.A. Postigo, R. Chtourou, M. A. Zaïbi, Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires, Nanomaterials. 10 (2020) 404
DOI: 10.3390/nano10030404
Google Scholar
[36]
O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, A. Manseri, Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching, Appl. Surf. Sci. 257 (2010) 591-595
DOI: 10.1016/j.apsusc.2010.07.039
Google Scholar
[37]
S. L.Cheng, C. H. Chung and H. C. Lee, A Study of the Synthesis, Characterization and Kinetics of Vertical Silicon Nanowire Arrays on (001)Si Substrates, J. Electrochem. Soc. 155 (2008) D711-D714
DOI: 10.1149/1.2977548
Google Scholar
[38]
S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen and P. K Singh, Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics, Nanotechnology. 25 (2014) 175601
DOI: 10.1088/0957-4484/25/17/175601
Google Scholar
[39]
B. Ozdemir, M. Kulakci, R. Turan. H. E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires, Nanotechnology. 22 (2011) 155606
DOI: 10.1088/0957-4484/22/15/155606
Google Scholar
[40]
A. Ghafarinazari, M. Mozafari, A systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures, J. Alloys Compd.616 (2014) 442-448
DOI: 10.1016/j.jallcom.2014.07.044
Google Scholar
[41]
S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu and F. Wei, Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature, Nanoscale Res. Lett. 9 (2014) 196
DOI: 10.1186/1556-276x-9-196
Google Scholar
[42]
V. Lehmann, The Electrochemical Dissolution of Silicon. Electrochemistry of Silicon, Wiley VCH Verlag GmbH (2002) 51-57
Google Scholar
[43]
B. Bhushan, Y. C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56 (2011) 1-108
DOI: 10.1016/j.pmatsci.2010.04.003
Google Scholar
[44]
W. Long, H. Li, B.Yang, N. Huang, L. Liu, Z. Gai, X. Jiang, Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling, J. mater. sci. Technol. 48 (2020) 1-8
DOI: 10.1016/j.jmst.2019.10.040
Google Scholar
[45]
X. H. Sun, S. D. Wang, N. B. Wong, D. D. D. Ma, and S. T. Lee, FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires, Inorg. Chem. 42 (2003)2398-2404
DOI: 10.1021/ic020723e
Google Scholar
[46]
S. Ahoulou, E. Perret, J-M. Nedelec, Functionalization and Characterization of Silicon Nanowires for Sensing Applications: A Review, Nanomaterials. 11(2021) 999
DOI: 10.3390/nano11040999
Google Scholar
[47]
N. Ennejah, M. Bouzitoun, A.Hajjaji, Detection of organic compounds based on surface photovoltage inversion of functionalized silicon nanowires, Appl. Phys. A 129 (2023) 482
DOI: 10.1007/s00339-023-06765-0
Google Scholar
[48]
Y. Qin, J. Zang, C. Bai, and X. Wang, Dual functionalization of aligned silicon nanowires by APTES and nano-Ag to achieve high response to rarefied acetone at high ambient humidity, J. Mater Sci: Mater Electron, 32 (2021) 908–922.
DOI: 10.1007/s10854-020-04868-5
Google Scholar