Temperature Etching and Metallic Agent Concentration Effect on Structure, Morphology and Wettability of Silicon Nanowires

Article Preview

Abstract:

Abstract. Structural, Morphologycal and Wettability of SiliconNanowires (SiNWs) elaborated using Ag assisted electroless chemical etching are investigated. Prior the etching, Ag nanoparticles (AgNPs) were deposited at room temperature in a HF/AgNO3 solution with different concentration of AgNO3. The XRD spectra of the Ag NPs deposit show a good crystallinity. The effects of temperature etching bath and concentrations of AgNO3 on the etching process were examined. The morphological study, performed using a Scanning Electron Microscopy (SEM), shows porous silicon layer of 2µm for the lower temperature etching. For 25°C, perpendicular silicon nanowires about 15µm were formed. For the higher etching temperature (50°C), the silicon nanowire about 50 nm in diameter and 50µm in length were formed. The impact of Ag concentration on the SiNWs formation is examined in the second part of the present work. It is shown that the etching depth decreases as the Ag concentration decreases with values of 2.8 μm and 2 μm for concentrations of 0.025M and 0.0125M, respectively. The hydrophobicity of the samples was monitored by measuring the contact angle between a drop of water and the sample surface. It was established that the morphology is strongly influenced by etching conditions and their wettability changes from superhydrophilic to hydrophobic. FTIR analysis confirms the oxide-free silicon nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-46

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Naama, T. Hadjersi, A .Keffous, G. Nezzal, CO2 gas sensor based on silicon nanowires modified with metal nanoparticles, Mater. Sci. Semicond. Process, 38 (2015) 367-371

DOI: 10.1016/j.mssp.2015.01.027

Google Scholar

[2] G. Farid, R. Amade-Rovira, R. Ospina, E. Bertran-Serra, Surface modification of silicon nanowires via drop-casting for high-performance Li-ion battery electrodes: SiNWs decorated with molybdenum oxide nanoparticles, J. Energy Storage. 78 (2024) 110104

DOI: 10.1016/j.est.2023.110104

Google Scholar

[3] S. Yogi, A. Kumar, P. Kumar, V. Kumar, M. Zulfequar, V. Kumar Jain, Trace level sensitivity and selectivity of room temperature NH3 gas sensors based on RGO/ZnO@ SiNWs heterostructure, Physica E Low Dimens. Syst. Nanostruct. 157 (2024) 115864

DOI: 10.1016/j.physe.2023.115864

Google Scholar

[4] R. Plugaru, E. Fakhri, C. Romanitan, I. Mihalache, G. Craciun, N. Plugaru, H.Ö. Árnason, M.T. Sultan, G.A. Nemnes, S. Ingvarsson, H.G. Svavarsson, A. Manolescu, Structure and electrical behavior of silicon nanowires prepared by MACE process, Surf. Interfaces. 33 (2022) 102167

DOI: 10.1016/j.surfin.2022.102167

Google Scholar

[5] X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77 (2000) 2572-2574

DOI: 10.1063/1.1319191

Google Scholar

[6] M. Naffeti, M.A. Zaïbi, C. Nefzi, A. V. García-Arias, R. Chtourou, P. A. Postigo, Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowiresEnviron. Technol. Innov. 30 (2023) 103133

DOI: 10.1016/j.eti.2023.103133

Google Scholar

[7] S. Lian, C. H. A Tsang, Z. Kang, Y. Liu, N. Wong, S.-T. Lee, Hydrogen-terminated silicon nanowire photocatalysis: benzene oxidation and methyl red decomposition, Mater. Res. Bull. 46 (2011), 2441–2444

DOI: 10.1016/j.materresbull.2011.08.027

Google Scholar

[8] R. Ghosh, J. Ghosh, R. Das, L.P.L. Mawlong, K.K. Paul, P.K. Giri, Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications, J. Colloid Interface Sci. 532 (2018) 464–473

DOI: 10.1016/j.jcis.2018.07.123

Google Scholar

[9] R. Ghosh, P. K. Giri, Silicon nanowire heterostructures for advanced energy and environmental applications: a review, Nanotechnology 28 (2016)1012001

DOI: 10.1088/0957-4484/28/1/012001

Google Scholar

[10] J. Ben Naceur, R. B. Zaghouani , M. Amlouk , M. Ali. Zaabi, R. Chtourou, Hydrothermal synthesis of MoS2-decorated silicon nanowires heterostructure with enhanced performance of photocatalytic activity under visible light, Inorg. Chem. Commun. 147 (2023) 110270

DOI: 10.1016/j.inoche.2022.110270

Google Scholar

[11] L. Chen, L. Peng, T. Renren, L. Feifei, L. Jing, L. Jinzhe, Z. Xin, L. Jiayi, G. Ying-Ying, Enhanced photocathode performance and stability for solar-powered hydrogen production through SiNWs@NC composite, Mater. Lett 357 (2024) 135719

DOI: 10.1016/j.matlet.2023.135719

Google Scholar

[12] F. Lin, R. Tian, P. Dong, G. Jiang, F. He, S. Wang, R. Fu, C. Zhao, Ying-Ying Gu, S. Wang, Defect-rich MoS2/NiS2 nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production, J. Colloid Interface Sci 631 (2023) 133-142

DOI: 10.1016/j.jcis.2022.10.131

Google Scholar

[13] W. Shen, B. Wu, F. Liao, B. Jiang, M. Shao, Int. Optimizing the hydrogen evolution reaction by shrinking Pt amount in Pt-Ag/SiNW nanocomposites, J. Hydrogen Energy.42 (2017)15024-15030

DOI: 10.1016/j.ijhydene.2017.03.110

Google Scholar

[14] W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction, Nano Energy. 28 (2016) 29-43

DOI: 10.1016/j.nanoen.2016.08.027

Google Scholar

[15] M. K. Sahoo , S. P. Muduli, P. Kale, Interdependence of morphological attributes and optoelectronic properties of porous silicon-nanowires, J Mater Sci: Mater Electron 34 (2023) 1275

DOI: 10.1007/s10854-023-11314-9

Google Scholar

[16] S. Ktifa, M. Rahmani, Strong enhancement of the optical properties of SiNWs by the deposition of snowball-like V2O5 nanoparticles, Optical Materials142 (2023) 114144

DOI: 10.1016/j.optmat.2023.114144

Google Scholar

[17] F. Ghulam, A-R. Roger, O. Rogelio, B-S. Enric, Surface modification of silicon nanowires via drop-casting for high-performance Li-ion battery electrodes: SiNWs decorated with molybdenum oxide nanoparticles, J. Energy Storage. 78 (2024) 110104.

DOI: 10.1016/j.est.2023.110104

Google Scholar

[18] Q. Zhou, M. Bao, X. Ni, A novel surface modification of silicon nanowires by polydopamine to prepare SiNWs/NC@NiO electrode for high-performance supercapacitor, Surf. Coat. Technol. 406 (2021)126660

DOI: 10.1016/j.surfcoat.2020.126660

Google Scholar

[19] X. Zhang, Y. Liu, C. Yao, J. Niu, H. Li, C. Xie, Facile and stable fabrication of wafer-scale, ultra-black c-silicon with 3D nano/micro hybrid structures for solar cells, Nanoscale Adv. 5 (2023) 142-152

DOI: 10.1039/d2na00637e

Google Scholar

[20] X. Liu, H. Zhang, Z. Huang, Z. Cheng, T. Li, A highly sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) using a peptide-functionalized silicon nanowire array sensor, Anal. Methods, 15 (2023) 2082-2087

DOI: 10.1039/d3ay00169e

Google Scholar

[21] H. Saidi, T. Hidouri, F. Saidi and A. Bouazizi, Effect of etching time and illumination on optical properties of SiNWs elaborated by Metal Assisted Chemical Etching (MACE) for organic photovoltaic applications, Superlattices Microstruct. 85 (2015) 925-930

DOI: 10.1016/j.spmi.2015.07.012

Google Scholar

[22] A. Backes, U. Schmid, Impact of doping level on the metal assisted chemical etching of p-type silicon, Sens. Actuator B-Chem. 193 (2014) 883-887

DOI: 10.1016/j.snb.2013.11.009

Google Scholar

[23] S-C. Shiu, S-B. Lin, S-C. Hung, C-F. Lin, Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching, Appl. Surf. Sci 257 (2011) 1829-1834

DOI: 10.1016/j.apsusc.2010.08.086

Google Scholar

[24] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu and F. Wei, Recent Development of Polydopamine: An Emerged Soft Matter for Surface Modification and Biomedical Applications, Nanoscale Res. Lett. 9 (2014) 196

Google Scholar

[25] W-K. To, C-H. Tsang, H-H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching,Nano. Lett. 11 (2011) 5252-5258

DOI: 10.1021/nl202674t

Google Scholar

[26] S. Naama, T. Hadjersi. A. Larabi. G. Nezzal, Effect of Silicon Wafer Resistivity on Morphology and Wettability of Silicon Nanowires Arrays, Silicon 13 (2021) 893–899

DOI: 10.1007/s12633-020-00511-4

Google Scholar

[27] H. Li, S. Kato, T. Soga, Etching rate of silicon nanowires with highly doped silicon during metal-assisted chemical etching, Mater. Res. Express 9 (2022) 115007

DOI: 10.1088/2053-1591/aca008

Google Scholar

[28] S. Lamrani, A. Guittoum, R. Schäfer, M. Hemmous, V. Neu, S. Pofahl, T. Hadjersi , N. Benbrahim, Morphology, structure and magnetic study of permalloy films electroplated on silicon nanowires, J. J. Magn. Magn. Mater. 396 (2015) 263–267

DOI: 10.1016/j.jmmm.2015.07.111

Google Scholar

[29] M. Ifires, T. Hadjersi, R. Chegroune, S. Lamrani, M. Fatsah, M. Mebarki, A. Manseri, One-step electrodeposition of superhydrophobic NiO-Co(OH)2 urchinlike structures on Si nanowires as photocatalyst for RhB degradation under visible light J. Alloys Compd. 774 (2019) 908–917

DOI: 10.1016/j.jallcom.2018.10.029

Google Scholar

[30] W. Long, H. Li, B. Yang, N. Huang, L. Liu, Z. Gai, X. Jiang, Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling, J. Mater. Sci. Technol. 48 (2020) 1-8

DOI: 10.1016/j.jmst.2019.10.040

Google Scholar

[31] T. Liyanage, A. Z. Qamar and G. Slaughter, Application of Nanomaterials for Chemical and Biological Sensors: A Review, IEEE Sens. J. 21 (2021) 12407-12425

DOI: 10.1109/jsen.2020.3032952

Google Scholar

[32] L. J. Wan, W. L. Gong, K. W. Jiang, H. L. Li, B. R. Tao, Preparation and surface modification of silicon nanowires under normal conditions, J. Appl. Surf. Sci. 254 (2008) 4899

DOI: 10.1016/j.apsusc.2008.01.142

Google Scholar

[33] A. H. Chiou , T-C. Chien, C-K. Su, J-F. Lin, C-Y Hsu, The effect of differently sized ag catalysts on the fabrication of a silicon nanowire array using ag-assisted electroless etching, Curr. Appl. Phys.13 (2013) 717-724

DOI: 10.1016/j.cap.2012.11.011

Google Scholar

[34] O. Kuntyi, G. Zozulya, M. Shepida, Nano/Micro-Structured Materials and Nano-Objects: Synthesis, Morphology, and Applications 2021, Adv. Mater. Sci. Eng (2022) 1482877

Google Scholar

[35] M. Naffeti, P.A. Postigo, R. Chtourou, M. A. Zaïbi, Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires, Nanomaterials. 10 (2020) 404

DOI: 10.3390/nano10030404

Google Scholar

[36] O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, A. Manseri, Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching, Appl. Surf. Sci. 257 (2010) 591-595

DOI: 10.1016/j.apsusc.2010.07.039

Google Scholar

[37] S. L.Cheng, C. H. Chung and H. C. Lee, A Study of the Synthesis, Characterization and Kinetics of Vertical Silicon Nanowire Arrays on (001)Si Substrates, J. Electrochem. Soc. 155 (2008) D711-D714

DOI: 10.1149/1.2977548

Google Scholar

[38] S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen and P. K Singh, Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics, Nanotechnology. 25 (2014) 175601

DOI: 10.1088/0957-4484/25/17/175601

Google Scholar

[39] B. Ozdemir, M. Kulakci, R. Turan. H. E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires, Nanotechnology. 22 (2011) 155606

DOI: 10.1088/0957-4484/22/15/155606

Google Scholar

[40] A. Ghafarinazari, M. Mozafari, A systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures, J. Alloys Compd.616 (2014) 442-448

DOI: 10.1016/j.jallcom.2014.07.044

Google Scholar

[41] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu and F. Wei, Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature, Nanoscale Res. Lett. 9 (2014) 196

DOI: 10.1186/1556-276x-9-196

Google Scholar

[42] V. Lehmann, The Electrochemical Dissolution of Silicon. Electrochemistry of Silicon, Wiley VCH Verlag GmbH (2002) 51-57

Google Scholar

[43] B. Bhushan, Y. C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56 (2011) 1-108

DOI: 10.1016/j.pmatsci.2010.04.003

Google Scholar

[44] W. Long, H. Li, B.Yang, N. Huang, L. Liu, Z. Gai, X. Jiang, Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling, J. mater. sci. Technol. 48 (2020) 1-8

DOI: 10.1016/j.jmst.2019.10.040

Google Scholar

[45] X. H. Sun, S. D. Wang, N. B. Wong, D. D. D. Ma, and S. T. Lee, FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires, Inorg. Chem. 42 (2003)2398-2404

DOI: 10.1021/ic020723e

Google Scholar

[46] S. Ahoulou, E. Perret, J-M. Nedelec, Functionalization and Characterization of Silicon Nanowires for Sensing Applications: A Review, Nanomaterials. 11(2021) 999

DOI: 10.3390/nano11040999

Google Scholar

[47] N. Ennejah, M. Bouzitoun, A.Hajjaji, Detection of organic compounds based on surface photovoltage inversion of functionalized silicon nanowires, Appl. Phys. A 129 (2023) 482

DOI: 10.1007/s00339-023-06765-0

Google Scholar

[48] Y. Qin, J. Zang, C. Bai, and X. Wang, Dual functionalization of aligned silicon nanowires by APTES and nano-Ag to achieve high response to rarefied acetone at high ambient humidity, J. Mater Sci: Mater Electron, 32 (2021) 908–922.

DOI: 10.1007/s10854-020-04868-5

Google Scholar