[1]
R. Dhanker, A. N. Brigeman, A. V. Larsen, R. J. Stewart, J. B. Asbury, N. C. Giebink,. Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105(15) (2014) 151112.
DOI: 10.1063/1.4898703
Google Scholar
[2]
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341–344.
DOI: 10.1126/science.1243982
Google Scholar
[3]
L. Atourki, E. Vega, B. Marí, M. Mollar, H. Ait Ahsainec, K. Bouabida, A. Ihlal. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3 −xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 371 (2016) 112–117.
DOI: 10.1016/j.apsusc.2016.02.207
Google Scholar
[4]
P. Basumatary, J. Kumari, P Agarwal. Probing the defects states in MAPbI3 perovskite thin films through photoluminescence and photoluminescence excitation spectroscopy studies. Optik. 266 (2022) 169586.
DOI: 10.1016/j.ijleo.2022.169586
Google Scholar
[5]
K. Ren, L. Huang, S. Yue, S. Lu, K. Liu, M. Azam, Z. Z. Wang, Z. Wei, S. Qu and Z. Z. Wang, J. Mater. Chem. C. 5 (2017) 2504–2508.
Google Scholar
[6]
A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L.Z. Hoye, K.C. Gödel, T. Bein, P. Docampo, S.E. Dutton, M.F.L.D. Volder, R.H. Friend, Blue-green color tunable solution processable organolead Chloride-Bromide mixed halide perovskites for optoelectronic applications, Nano Lett. 9 (2015) 6095–6101.
DOI: 10.1021/acs.nanolett.5b02369
Google Scholar
[7]
G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.W. Lim, R.H. Friend, N.C. Greenham, Efficient light emitting diodes based on nano crystalline perovskite in a dielectric polymer matrix, Nano. Lett. 15 (2015) 2640–2644.
DOI: 10.1021/acs.nanolett.5b00235
Google Scholar
[8]
L. Gu, M. M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed, Y. Xiao, K. Tsui, Y. Lin, L. Liao, J. Wang and Z. Fan, Adv. Mater., 28(44) (2016) 9713–9721.
DOI: 10.1002/adma.201601603
Google Scholar
[9]
Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar hetero junction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc. 136 (2014) 622–625.
DOI: 10.1021/ja411509g
Google Scholar
[10]
T. Duong, J. Peng, D. Walter, J. Xiang, H. Shen, D. Chugh, M. N. Lockrey, D. Zhong, J. Li, K. J. Weber, T. P. White and K. R. Catchpole, ACS Energy Lett., 3(10) (2018) 2441–2448.
DOI: 10.1021/acsenergylett.8b01483
Google Scholar
[11]
J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Gra¨tzel and A. Hagfeldt, Energy Environ. Sci., 10 (2017) 710–727.
DOI: 10.1039/c6ee03397k
Google Scholar
[12]
H. Aitdads, S. Bousit, L. Nkhaili, A. Elkissani, A. Outzourhit, Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide solar cells. Sol. Energy Mater Sol. Cells. 148 (2016) 30-33.
DOI: 10.1016/j.solmat.2015.09.063
Google Scholar
[13]
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management, Nature 590 (2021) 587–593.
DOI: 10.1038/s41586-021-03285-w
Google Scholar
[14]
R. Tanta, C. Lindberg, S. Lehmann, J. Bolinsson, M. R. Carro-temboury, K. A. Dick, T. Vosch, T. S. Jespersen and J. Nygård, Phys. Rev. B, 96(16) (2017) 165433–165440.
DOI: 10.1103/physrevb.96.165433
Google Scholar
[15]
S. Nakashima, Y. Nakatake, Y. Ishida, T. Talkahashi and H. Okumura, Phys. B, 310 (2001) 684–686.
Google Scholar
[16]
G. Litrico, N. Piluso, F. La Via, Mater. Sci. Forum, 897, (2017) 303–306.
Google Scholar
[17]
G. Gordillo , O.G. Torresa, M. C. Abellaa, J. C. Penaa, O.Virguezb, Improving the stability of MAPbI3 films by using a new synthesis route. J MATER RES TECHNOL. 9(6) (2020) 13759-13769.
Google Scholar
[18]
C.S Pathak, Probing the photodegradation of MAPI perovskite with concentrated sunlight. Optical Materials 133 (2022) 113012.
DOI: 10.1016/j.optmat.2022.113012
Google Scholar
[19]
C.A. López, C. Abia, J.E. Rodrigues, F. Serrano-Sánchez, N. M. Nemes, J. L. Martínez, M. T. Fernandez-Díaz, N. Biškup, C. Alvarez-Galván, F. Carrascoso, A. Castellanos-Gomez, J. A. Alonso. Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci Rep 10, 11228 (2020).
DOI: 10.1038/s41598-020-68085-0
Google Scholar
[20]
M.A. Mohammed , G. Sarusi , P. Sakthivel , G. Ravi , U. Younis , Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells. 137( 2021) 111182
DOI: 10.1016/j.materresbull.2020.111182
Google Scholar
[21]
A. Thakur, D. Singh, S. K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell. Materials Today: Proceedings, 71, (2022) 195-201.
DOI: 10.1016/j.matpr.2022.08.423
Google Scholar
[22]
W.O. Herrera Martínez, P. Giudici, N.B. Correa Guerrero, M.L. Ibarra and M.D. Perez, Mater. Adv., 1 (2020) 2068.
Google Scholar
[23]
C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F. De Angelis, The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment, J. Phys. Chem. Lett. 5 (2014) 279–284.
DOI: 10.1021/jz402589q
Google Scholar
[24]
S.M. Jain, B. Philippe, E.M.J. Johansson, Park B.-w, H. Rensmo, T. Edvinsson, G. Boschloo, Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase, J. Mater. Chem. A 4 (2016) 2630–2642.
DOI: 10.1039/c5ta08745g
Google Scholar
[25]
T. Glaser, C. Müller, M. Sendner, C. Krekeler, O.E. Semonin, T.D. Hull, O. Yaffe, J. S. Owen, W. Kowalsky, A. Pucci, R. Lovrinˇci´c, Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites, J. Phys. Chem. Lett. 6 (2015) 2913–2918.
DOI: 10.1021/acs.jpclett.5b01309
Google Scholar
[26]
M. Park, N. Kornienko, S.E. Reyes-Lillo, M. Lai, J.B. Neaton, P. Yang, R.A. Mathies, Critical role of methylammonium librational motion in methylammonium lead iodide (CH3NH3PbI3) perovskite photochemistry, Nano Lett. 17 (2017) 4151–4157.
DOI: 10.1021/acs.nanolett.7b00919
Google Scholar
[27]
D.-N. Jeong, D.-K. Lee, S. Seo, S.Y. Lim, Y. Zhang, H. Shin, H. Cheong, N.-G. Park, Perovskite cluster-containing solution for scalable d-bar coating toward highthroughput perovskite solar cells, ACS Energy Lett. 4 (2019) 1189–1195.
DOI: 10.1021/acsenergylett.9b00042
Google Scholar
[28]
Y. –S. Chen, T. –Yu. Hung, Y. –S. Lo, C. –L. Wang. A facile healing of two-step deposited MAPbI3 perovskite on TiO2 nanorod through dynamic methylamine treatment. Materials Today Communications. 31 (2022)103744.
DOI: 10.1016/j.mtcomm.2022.103744
Google Scholar
[29]
Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3on mesoporous TiO2electrodes, Appl. Phys. Express 7 (2014), 032302.
DOI: 10.7567/apex.7.032302
Google Scholar
[30]
D. Meggiolaro, F. De Angelis, First-principles modeling of defects in lead halide perovskites: best practices and open issues, ACS Energy Lett. 3 (2018) 2206–2222.
DOI: 10.1021/acsenergylett.8b01212
Google Scholar
[31]
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science 358 (2017) 745–750.
DOI: 10.1126/science.aam7093
Google Scholar
[32]
W. Qarony, M. K. Hossain, M. I. Hossain, S. Ma, L. Zeng, K. M. Yu, D. Knipp, A. Salleo, H. Sun, C.T. Yip, Y. H. Tsang. Excitation Wavelength Dependent Reversible Photoluminescence Peak in Iodide Perovskites. 2018. arXiv preprint arXiv:1812.10335.
DOI: 10.1016/j.tsf.2021.138950
Google Scholar