Synthesis and Optical Properties of CH3NH3PbI3 Nanorods with Defects States

Article Preview

Abstract:

In this work, methylammonium lead halide CH3NH3PbI3 (MAPI3) perovskite nanorods were synthesized by the sol gel-spray ultrasonic method. The XRD pattern exhibits peaks assigned to the tetragonal MAPI3 structure with a residual PbI2 phase. SEM and AFM images show the formation of nanorods like picture with rough surface. The Raman spectrum was visualized to show various vibration modes in the film. Photoluminescence data revealed one emission peak at 786 nm (1.58 eV) in the band gap band, which was confirmed by the UV-Vis spectrum. The slight difference between the found band gap energy and the ideal one is explained in terms of shallow trap states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-53

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Dhanker, A. N. Brigeman, A. V. Larsen, R. J. Stewart, J. B. Asbury, N. C. Giebink,. Random lasing in organo-lead halide perovskite microcrystal networks.  Appl. Phys. Lett. 105(15) (2014) 151112.

DOI: 10.1063/1.4898703

Google Scholar

[2] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341–344.

DOI: 10.1126/science.1243982

Google Scholar

[3] L. Atourki, E. Vega, B. Marí, M. Mollar, H. Ait Ahsainec, K. Bouabida, A. Ihlal. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3 −xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 371 (2016) 112–117.

DOI: 10.1016/j.apsusc.2016.02.207

Google Scholar

[4] P. Basumatary, J. Kumari, P Agarwal. Probing the defects states in MAPbI3 perovskite thin films through photoluminescence and photoluminescence excitation spectroscopy studies. Optik. 266 (2022) 169586.

DOI: 10.1016/j.ijleo.2022.169586

Google Scholar

[5] K. Ren, L. Huang, S. Yue, S. Lu, K. Liu, M. Azam, Z. Z. Wang, Z. Wei, S. Qu and Z. Z. Wang, J. Mater. Chem. C. 5 (2017) 2504–2508.

Google Scholar

[6] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L.Z. Hoye, K.C. Gödel, T. Bein, P. Docampo, S.E. Dutton, M.F.L.D. Volder, R.H. Friend, Blue-green color tunable solution processable organolead Chloride-Bromide mixed halide perovskites for optoelectronic applications, Nano Lett. 9 (2015) 6095–6101.

DOI: 10.1021/acs.nanolett.5b02369

Google Scholar

[7] G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.W. Lim, R.H. Friend, N.C. Greenham, Efficient light emitting diodes based on nano crystalline perovskite in a dielectric polymer matrix, Nano. Lett. 15 (2015) 2640–2644.

DOI: 10.1021/acs.nanolett.5b00235

Google Scholar

[8] L. Gu, M. M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed, Y. Xiao, K. Tsui, Y. Lin, L. Liao, J. Wang and Z. Fan, Adv. Mater., 28(44) (2016) 9713–9721.

DOI: 10.1002/adma.201601603

Google Scholar

[9] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, Y. Yang, Planar hetero junction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc. 136 (2014) 622–625.

DOI: 10.1021/ja411509g

Google Scholar

[10] T. Duong, J. Peng, D. Walter, J. Xiang, H. Shen, D. Chugh, M. N. Lockrey, D. Zhong, J. Li, K. J. Weber, T. P. White and K. R. Catchpole, ACS Energy Lett., 3(10) (2018) 2441–2448.

DOI: 10.1021/acsenergylett.8b01483

Google Scholar

[11] J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Gra¨tzel and A. Hagfeldt, Energy Environ. Sci., 10 (2017) 710–727.

DOI: 10.1039/c6ee03397k

Google Scholar

[12] H. Aitdads, S. Bousit, L. Nkhaili, A. Elkissani, A. Outzourhit, Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide solar cells. Sol. Energy Mater Sol. Cells. 148 (2016) 30-33.

DOI: 10.1016/j.solmat.2015.09.063

Google Scholar

[13] J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management, Nature 590 (2021) 587–593.

DOI: 10.1038/s41586-021-03285-w

Google Scholar

[14] R. Tanta, C. Lindberg, S. Lehmann, J. Bolinsson, M. R. Carro-temboury, K. A. Dick, T. Vosch, T. S. Jespersen and J. Nygård, Phys. Rev. B, 96(16) (2017) 165433–165440.

DOI: 10.1103/physrevb.96.165433

Google Scholar

[15] S. Nakashima, Y. Nakatake, Y. Ishida, T. Talkahashi and H. Okumura, Phys. B, 310 (2001) 684–686.

Google Scholar

[16] G. Litrico, N. Piluso, F. La Via, Mater. Sci. Forum, 897, (2017) 303–306.

Google Scholar

[17] G. Gordillo , O.G. Torresa, M. C. Abellaa, J. C. Penaa, O.Virguezb, Improving the stability of MAPbI3 films by using a new synthesis route. J MATER RES TECHNOL. 9(6) (2020) 13759-13769.

Google Scholar

[18] C.S Pathak, Probing the photodegradation of MAPI perovskite with concentrated sunlight. Optical Materials 133 (2022) 113012.

DOI: 10.1016/j.optmat.2022.113012

Google Scholar

[19] C.A. López, C. Abia, J.E. Rodrigues, F. Serrano-Sánchez, N. M. Nemes, J. L. Martínez, M. T. Fernandez-Díaz, N. Biškup, C. Alvarez-Galván, F. Carrascoso, A. Castellanos-Gomez, J. A. Alonso. Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci Rep 10, 11228 (2020).

DOI: 10.1038/s41598-020-68085-0

Google Scholar

[20] M.A. Mohammed , G. Sarusi , P. Sakthivel , G. Ravi , U. Younis , Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells. 137( 2021) 111182

DOI: 10.1016/j.materresbull.2020.111182

Google Scholar

[21] A. Thakur, D. Singh, S. K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell. Materials Today: Proceedings, 71, (2022) 195-201.

DOI: 10.1016/j.matpr.2022.08.423

Google Scholar

[22] W.O. Herrera Martínez, P. Giudici, N.B. Correa Guerrero, M.L. Ibarra and M.D. Perez, Mater. Adv.,  1 (2020) 2068.

Google Scholar

[23] C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F. De Angelis, The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment, J. Phys. Chem. Lett. 5 (2014) 279–284.

DOI: 10.1021/jz402589q

Google Scholar

[24] S.M. Jain, B. Philippe, E.M.J. Johansson, Park B.-w, H. Rensmo, T. Edvinsson, G. Boschloo, Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase, J. Mater. Chem. A 4 (2016) 2630–2642.

DOI: 10.1039/c5ta08745g

Google Scholar

[25] T. Glaser, C. Müller, M. Sendner, C. Krekeler, O.E. Semonin, T.D. Hull, O. Yaffe, J. S. Owen, W. Kowalsky, A. Pucci, R. Lovrinˇci´c, Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites, J. Phys. Chem. Lett. 6 (2015) 2913–2918.

DOI: 10.1021/acs.jpclett.5b01309

Google Scholar

[26] M. Park, N. Kornienko, S.E. Reyes-Lillo, M. Lai, J.B. Neaton, P. Yang, R.A. Mathies, Critical role of methylammonium librational motion in methylammonium lead iodide (CH3NH3PbI3) perovskite photochemistry, Nano Lett. 17 (2017) 4151–4157.

DOI: 10.1021/acs.nanolett.7b00919

Google Scholar

[27] D.-N. Jeong, D.-K. Lee, S. Seo, S.Y. Lim, Y. Zhang, H. Shin, H. Cheong, N.-G. Park, Perovskite cluster-containing solution for scalable d-bar coating toward highthroughput perovskite solar cells, ACS Energy Lett. 4 (2019) 1189–1195.

DOI: 10.1021/acsenergylett.9b00042

Google Scholar

[28] Y. –S. Chen, T. –Yu. Hung, Y. –S. Lo, C. –L. Wang. A facile healing of two-step deposited MAPbI3 perovskite on TiO2 nanorod through dynamic methylamine treatment. Materials Today Communications. 31 (2022)103744.

DOI: 10.1016/j.mtcomm.2022.103744

Google Scholar

[29] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3on mesoporous TiO2electrodes, Appl. Phys. Express 7 (2014), 032302.

DOI: 10.7567/apex.7.032302

Google Scholar

[30] D. Meggiolaro, F. De Angelis, First-principles modeling of defects in lead halide perovskites: best practices and open issues, ACS Energy Lett. 3 (2018) 2206–2222.

DOI: 10.1021/acsenergylett.8b01212

Google Scholar

[31] M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science 358 (2017) 745–750.

DOI: 10.1126/science.aam7093

Google Scholar

[32] W. Qarony, M. K. Hossain, M. I. Hossain, S. Ma, L. Zeng, K. M. Yu, D. Knipp, A. Salleo, H. Sun, C.T. Yip, Y. H. Tsang. Excitation Wavelength Dependent Reversible Photoluminescence Peak in Iodide Perovskites. 2018. arXiv preprint arXiv:1812.10335.

DOI: 10.1016/j.tsf.2021.138950

Google Scholar