Assessing the Heating Ability of Carbon Nanotubes-Fe3O4 Nanocomposites for Magnetic Hyperthermia Application

Article Preview

Abstract:

Recently, magnetic nanocomposites have demonstrated considerable potential for applications using magnetic fluid hyperthermia (MFH). The synthesis of hybrid nanocomposites of carbon nanotubes-iron oxide (CNT-Fe34) for radio-frequency hyperthermia therapy and the investigation of their heating efficiency at varying frequencies and field amplitudes of an alternating magnetic field (AMF) are reported. XRD, SEM, EDS, FTIR and SQUID techniques have been employed to fully characterize the as-synthesized samples. XRD and FTIR results confirmed the successful fabrication of the nanocomposites. Magnetization (M) versus magnetic field strength (H) loops at room temperature revealed superparamagnetic behavior with saturation of 17 emu/g. Zero-field-cooled and field-cooled (ZFC-FC) curves showed that the blocking temperature (TB) was around 282 K. Heating abilities and SAR values as functions of frequency, field amplitude of AMF and concentration of nanoparticles were systematically investigated. Hyperthermia temperatures range can be attained in relatively short times for different concentrations of the nanocomposite. An enhancement in SAR was observed with decreasing concentrations and rising frequency and amplitude. Interestingly, the lowest dose of the nanocomposite (2.5 mg/ml) showed the greatest SAR (113W/g) and intrinsic loss power (ILP) of 1.86 nHm2/kg. This elevated ILP value falls into the range achieved by commercial ferrofluids (0.2−3.1 nHm2/kg). Lastly, according to linear response theory (LRT), SAR values depend on field amplitude. Overall, the obtained nanocomposites have a significant potential for use in cancer therapies involving hyperthermia, as indicated by their generally good heating efficiencies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-13

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kang, C.-S., et al., Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. 2016. 107: pp.217-224.

DOI: 10.1016/j.carbon.2016.05.069

Google Scholar

[2] Kazemipour, M., M. Behzadi, and R.J.M.J. Ahmadi, Poly (o-phenylenediamine-co-o-toluidine)/modified carbon nanotubes composite coating fabricated on a stainless steel wire for the headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. 2016. 128: pp.258-266.

DOI: 10.1016/j.microc.2016.05.004

Google Scholar

[3] Yang, L., et al., Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochimica Acta, Volume 144 (2014), pp.235-242.

DOI: 10.1016/j.electacta.2014.08.099

Google Scholar

[4] Islam, M.S., et al., Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications. 2016. 96: pp.701-710.

DOI: 10.1016/j.carbon.2015.10.002

Google Scholar

[5] Al-Saidi, H., et al., Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. 2016. 216: pp.693-698.

DOI: 10.1016/j.molliq.2016.01.086

Google Scholar

[6] Sajid, M.I., et al., Carbon nanotubes from synthesis to in vivo biomedical applications. 2016. 501(1-2): pp.278-299.

Google Scholar

[7] Çalımlı, M.J.I.J.o.E.S. and Technology, Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. 2021. 18(3): pp.723-740.

DOI: 10.1007/s13762-020-02855-1

Google Scholar

[8] Sun, Y., et al., Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. 2010. 10(5): pp.1747-1753.

DOI: 10.1021/nl100170j

Google Scholar

[9] Pérez-Alonso, F., et al., MA Pe na, JLG Fierro, S. Rojas. 2013. 240: pp.494-502.

Google Scholar

[10] Wang, X., et al., Fabrication and characterization of magnetic Fe3O4–CNT composites. 2010. 71(4): pp.673-676.

Google Scholar

[11] Hu, Y., et al., Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles. 2018. 34(5): pp.886-890.

Google Scholar

[12] Zhao, F., et al., Synthesis and characterization of magnetic Fe/CNTs composites with controllable Fe nanoparticle concentration. 2012. 407(13): pp.2495-2499.

DOI: 10.1016/j.physb.2012.03.052

Google Scholar

[13] Jia, B. and L.J.T.J.o.P.C.B. Gao, Fabrication of "tadpole"-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field. 2007. 111(19): pp.5337-5343.

DOI: 10.1021/jp070675p

Google Scholar

[14] Morales-Cid, G., et al., In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (fluoro) quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. 2010. 82(7): pp.2743-2752.

DOI: 10.1021/ac902631h

Google Scholar

[15] Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C.Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 2005, 17, 1290−1295.

DOI: 10.1021/cm048357f

Google Scholar

[16] Jordan A, Wust P, Scholz R, et al. Magnetic Fluid Hyperthermia(MFH). In: U. H€afeli, W. Schutt, J. Teller, and M. Zborowski, editors, Scientific and clinical applications of magnetic carriers. Boston,MA: Springer US; 1997. p.569–595.

DOI: 10.1007/978-1-4757-6482-6_43

Google Scholar

[17] A.B. Salunkhe, V.M. Khot, S.H. Pawar, Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review, Curr. Top. Med. Chem. (2014).

DOI: 10.2174/1568026614666140118203550

Google Scholar

[18] El-Boubbou, K., Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 2018, 13 (8), 953-971.

DOI: 10.2217/nnm-2017-0336

Google Scholar

[19] El-Boubbou, K.; Lemine, O.M.; Ali, R.; Huwaizi, S.M.; Al-Humaid, S.; AlKushi, A. Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New Journal of Chemistry 46 (2022), 5489-5504.

DOI: 10.1039/d1nj05791j

Google Scholar

[20] De la Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M.; Rivero, G.; Hernando, A., Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. The Journal of Physical Chemistry C 2012, 116 (48), 25602-25610.

DOI: 10.1021/jp310771p

Google Scholar

[21] Alotaibi, I.; Alshammari, M. S.; Algessair, S.; Madkhali, N.; All, N. A.; Hjiri, M.; Alrub, S. A.; El Mir, L.; Lemine, O., Synthesis, characterization and heating efficiency of Gd-doped maghemite (γ-Fe2O3) nanoparticles for hyperthermia application. Physica B: Condensed Matter 2022, 625, 413510.

DOI: 10.1016/j.physb.2021.413510

Google Scholar

[22] A. Aldaoud, O.M. Lemine, N. Ihzaz, L. El Mir, S.A. Alrub, K. El-Boubbou, Magneto-thermal properties of Co-doped maghemite (γ-Fe2O3) nanoparticles for magnetic hyperthermia applications, Physica B: Condensed Matter, 639 (2022) 413993.

DOI: 10.1016/j.physb.2022.413993

Google Scholar

[23] Madkhali, N.; Algessair, S.; Lemine, O.; Alanzi, A. Z.; Ihzaz, N.; EL Mir, L., Heating Ability of γ-Fe2O3@ ZnO/Al Nanocomposite for Magnetic Hyperthermia Applications. Science of Advanced Materials 2022, 14 (8), 1394-1400.

DOI: 10.1166/sam.2022.4333

Google Scholar

[24] O. M. Lemine, N. Madkhali, M. Alshammari, S. Algessair, A. Gismelseed, L. El Mir, M. Hjiri, A. A. Yousif and K. El-Boubbou, Materials, 2021, 14.

DOI: 10.3390/ma14195691

Google Scholar

[25] 25. Darwish, M.S.A., Al-Harbi, L.M. & Bakry, A. Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application. J Therm Anal Calorim 147, 11921–11930 (2022).

DOI: 10.1007/s10973-022-11393-6

Google Scholar

[26] O.M. Lemine, N. Madkhali, M. Alshammari, S. Algessair, A. Gismelseed, L. El Mir, M. Hjiri, A.A. Yousif, K. El-Boubbou, Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency, Materials, 2021.

DOI: 10.3390/ma14195691

Google Scholar

[27] M.E. Sadat, R. Patel, J. Sookoor, S.L. Bud'ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, D. Shi, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications, Materials Science and Engineering: C, 42 (2014) 52-63

DOI: 10.1016/j.msec.2014.04.064

Google Scholar

[28] OM Lemine, S Algessair, N Madkhali, B Al-Najar, K El-Boubbou, A ssessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency and field amplitude, Nanomaterials 13 (3), (2023) 453

DOI: 10.3390/nano13030453

Google Scholar

[29] R. Kumar, A. Chauhan, S.K. Jha, B.K. Kuanr, Localized cancer treatment by radiofrequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies, J. Mater. Chem. B 6 (2018) 5385–5399

DOI: 10.1039/c8tb01365a

Google Scholar

[30] M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 321 (2009) 1509-1513.

DOI: 10.1016/j.jmmm.2009.02.075

Google Scholar

[31] J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, Journal of Applied Physics, 109 (2011).

DOI: 10.1063/1.3551582

Google Scholar

[32] N.D. Thorat, O.M. Lemine, R.A. Bohara, K. Omri, L. El Mir, S.A.M. Tofail, Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications, Physical Chemistry Chemical Physics, 18 (2016) 21331-21339.

DOI: 10.1039/c6cp03430f

Google Scholar

[33] Nooshin Naderi, Farnaz Lalebeigi, Zahra Sadat, Reza Eivazzadeh-Keihan, Ali Maleki, Mohammad Mahdavi, Recent advances on hyperthermia therapy applications of carbon-based nanocomposites, Colloids and Surfaces B: Biointerfaces 228 (2023) 113430

DOI: 10.1016/j.colsurfb.2023.113430

Google Scholar

[34] Elamin, M.R., B.Y. Abdulkhair, and A.O.J.A.S.E.J. Elzupir, Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Engineering Journal 14(1) 2023. p.101844.

DOI: 10.1016/j.asej.2022.101844

Google Scholar

[35] P. Martins, C. M. Costa, G. Botelho, S. Lanceros-Mendez, J. M. Barandiaran, et J. Gutierrez, « Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites », Mater. Chem. Phys., vol. 131, no 3, p.698‑705, janv. 2012.

DOI: 10.1016/j.matchemphys.2011.10.037

Google Scholar

[36] A. Altomare et al., « Automatic structure determination from powder data with EXPO2004 », J. Appl. Crystallogr., vol. 37, no 6, p.1025‑1028, 2004.

DOI: 10.1107/s0021889804021417

Google Scholar

[37] Kandori K., Ohkoshi N., Yasukawa A.,Ishikawa T., J. Mater. Res. 13 (1998) 1698-1706

Google Scholar

[38] S.A. Hassanzadeh-Tabrizi, Precise calculation of crystallite size of nanomaterials: A review, Journal of Alloys and Compounds, Volume 968, 2023, 171914

DOI: 10.1016/j.jallcom.2023.171914

Google Scholar

[39] E. C. Stoner and E. P. Wohlfarth, Magnetics, IEEE Transactions on 27 (4), 3475-3518 (1991).

Google Scholar

[40] Adhistinka Jiananda, Emi Kurnia Saria, Dyah Ayu Larasatia, Rivaldo Marsel Tumbelaka, Harlina Ardiyantia, Mahardika Yoga Darmawana, Nurul Imani Istiqomaha, Sunaryonoc, Sigit Tri Wicaksonod, Edi Suharyadia, "Optical, microstructural, and magnetic hyperthermia properties of green-synthesized Fe3O4/carbon dots nanocomposites utilizing Moringa oleifera extract and watermelon rinds". CarbonTrends13(2023)100305

DOI: 10.1016/j.cartre.2023.100305

Google Scholar

[41] Amit B. Tewari, Ritu Sharma, Deepika Sharma, "Magnetic hyperthermia cancer therapy using rare earth metal-based nanoparticles: An investigation of Lanthanum strontium Manganite's hyperthermic properties" , Results in Engineering 20 (2023) 101537

DOI: 10.1016/j.rineng.2023.101537

Google Scholar

[42] Pelayo García-Acevedoa, Zulema Vargas-Osorio, Brenda Velasco, Manuel A. Gonzalez-G´ omez, Angela Arnosa-Prieto, Lisandra de Castro-Alves, Ramon Iglesias-Reyd, Pablo Taboada, Yolanda Pineiroa, Jose Rivas, "Simple thermal treatment to improve the MRI and magnetic hyperthermia performance of hybrid iron Oxide-Mesoporous silica nanocarriers", Journalof Molecular Liquids 398(2024)124299

DOI: 10.1016/j.molliq.2024.124299

Google Scholar

[43] N. Bentarhlia, M. Elansary, M. Belaiche, Y. Mouhib, O.M. Lemine , H. Zaher, A. Oubihi, B. Kartah, H. Monfalouti, "Evaluating of novel Mn–Mg–Co ferrite nanoparticles for biomedical applications: From synthesis to biological activities", Ceramics International, 49(2023), Pages 40421-40434

DOI: 10.1016/j.ceramint.2023.10.017

Google Scholar