[1]
Kang, C.-S., et al., Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. 2016. 107: pp.217-224.
DOI: 10.1016/j.carbon.2016.05.069
Google Scholar
[2]
Kazemipour, M., M. Behzadi, and R.J.M.J. Ahmadi, Poly (o-phenylenediamine-co-o-toluidine)/modified carbon nanotubes composite coating fabricated on a stainless steel wire for the headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. 2016. 128: pp.258-266.
DOI: 10.1016/j.microc.2016.05.004
Google Scholar
[3]
Yang, L., et al., Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochimica Acta, Volume 144 (2014), pp.235-242.
DOI: 10.1016/j.electacta.2014.08.099
Google Scholar
[4]
Islam, M.S., et al., Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications. 2016. 96: pp.701-710.
DOI: 10.1016/j.carbon.2015.10.002
Google Scholar
[5]
Al-Saidi, H., et al., Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. 2016. 216: pp.693-698.
DOI: 10.1016/j.molliq.2016.01.086
Google Scholar
[6]
Sajid, M.I., et al., Carbon nanotubes from synthesis to in vivo biomedical applications. 2016. 501(1-2): pp.278-299.
Google Scholar
[7]
Çalımlı, M.J.I.J.o.E.S. and Technology, Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. 2021. 18(3): pp.723-740.
DOI: 10.1007/s13762-020-02855-1
Google Scholar
[8]
Sun, Y., et al., Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. 2010. 10(5): pp.1747-1753.
DOI: 10.1021/nl100170j
Google Scholar
[9]
Pérez-Alonso, F., et al., MA Pe na, JLG Fierro, S. Rojas. 2013. 240: pp.494-502.
Google Scholar
[10]
Wang, X., et al., Fabrication and characterization of magnetic Fe3O4–CNT composites. 2010. 71(4): pp.673-676.
Google Scholar
[11]
Hu, Y., et al., Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles. 2018. 34(5): pp.886-890.
Google Scholar
[12]
Zhao, F., et al., Synthesis and characterization of magnetic Fe/CNTs composites with controllable Fe nanoparticle concentration. 2012. 407(13): pp.2495-2499.
DOI: 10.1016/j.physb.2012.03.052
Google Scholar
[13]
Jia, B. and L.J.T.J.o.P.C.B. Gao, Fabrication of "tadpole"-like magnetite/multiwalled carbon nanotube heterojunctions and their self-assembly under external magnetic field. 2007. 111(19): pp.5337-5343.
DOI: 10.1021/jp070675p
Google Scholar
[14]
Morales-Cid, G., et al., In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (fluoro) quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. 2010. 82(7): pp.2743-2752.
DOI: 10.1021/ac902631h
Google Scholar
[15]
Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C.Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 2005, 17, 1290−1295.
DOI: 10.1021/cm048357f
Google Scholar
[16]
Jordan A, Wust P, Scholz R, et al. Magnetic Fluid Hyperthermia(MFH). In: U. H€afeli, W. Schutt, J. Teller, and M. Zborowski, editors, Scientific and clinical applications of magnetic carriers. Boston,MA: Springer US; 1997. p.569–595.
DOI: 10.1007/978-1-4757-6482-6_43
Google Scholar
[17]
A.B. Salunkhe, V.M. Khot, S.H. Pawar, Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review, Curr. Top. Med. Chem. (2014).
DOI: 10.2174/1568026614666140118203550
Google Scholar
[18]
El-Boubbou, K., Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 2018, 13 (8), 953-971.
DOI: 10.2217/nnm-2017-0336
Google Scholar
[19]
El-Boubbou, K.; Lemine, O.M.; Ali, R.; Huwaizi, S.M.; Al-Humaid, S.; AlKushi, A. Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New Journal of Chemistry 46 (2022), 5489-5504.
DOI: 10.1039/d1nj05791j
Google Scholar
[20]
De la Presa, P.; Luengo, Y.; Multigner, M.; Costo, R.; Morales, M.; Rivero, G.; Hernando, A., Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. The Journal of Physical Chemistry C 2012, 116 (48), 25602-25610.
DOI: 10.1021/jp310771p
Google Scholar
[21]
Alotaibi, I.; Alshammari, M. S.; Algessair, S.; Madkhali, N.; All, N. A.; Hjiri, M.; Alrub, S. A.; El Mir, L.; Lemine, O., Synthesis, characterization and heating efficiency of Gd-doped maghemite (γ-Fe2O3) nanoparticles for hyperthermia application. Physica B: Condensed Matter 2022, 625, 413510.
DOI: 10.1016/j.physb.2021.413510
Google Scholar
[22]
A. Aldaoud, O.M. Lemine, N. Ihzaz, L. El Mir, S.A. Alrub, K. El-Boubbou, Magneto-thermal properties of Co-doped maghemite (γ-Fe2O3) nanoparticles for magnetic hyperthermia applications, Physica B: Condensed Matter, 639 (2022) 413993.
DOI: 10.1016/j.physb.2022.413993
Google Scholar
[23]
Madkhali, N.; Algessair, S.; Lemine, O.; Alanzi, A. Z.; Ihzaz, N.; EL Mir, L., Heating Ability of γ-Fe2O3@ ZnO/Al Nanocomposite for Magnetic Hyperthermia Applications. Science of Advanced Materials 2022, 14 (8), 1394-1400.
DOI: 10.1166/sam.2022.4333
Google Scholar
[24]
O. M. Lemine, N. Madkhali, M. Alshammari, S. Algessair, A. Gismelseed, L. El Mir, M. Hjiri, A. A. Yousif and K. El-Boubbou, Materials, 2021, 14.
DOI: 10.3390/ma14195691
Google Scholar
[25]
25. Darwish, M.S.A., Al-Harbi, L.M. & Bakry, A. Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application. J Therm Anal Calorim 147, 11921–11930 (2022).
DOI: 10.1007/s10973-022-11393-6
Google Scholar
[26]
O.M. Lemine, N. Madkhali, M. Alshammari, S. Algessair, A. Gismelseed, L. El Mir, M. Hjiri, A.A. Yousif, K. El-Boubbou, Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency, Materials, 2021.
DOI: 10.3390/ma14195691
Google Scholar
[27]
M.E. Sadat, R. Patel, J. Sookoor, S.L. Bud'ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, D. Shi, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications, Materials Science and Engineering: C, 42 (2014) 52-63
DOI: 10.1016/j.msec.2014.04.064
Google Scholar
[28]
OM Lemine, S Algessair, N Madkhali, B Al-Najar, K El-Boubbou, A ssessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency and field amplitude, Nanomaterials 13 (3), (2023) 453
DOI: 10.3390/nano13030453
Google Scholar
[29]
R. Kumar, A. Chauhan, S.K. Jha, B.K. Kuanr, Localized cancer treatment by radiofrequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies, J. Mater. Chem. B 6 (2018) 5385–5399
DOI: 10.1039/c8tb01365a
Google Scholar
[30]
M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 321 (2009) 1509-1513.
DOI: 10.1016/j.jmmm.2009.02.075
Google Scholar
[31]
J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, Journal of Applied Physics, 109 (2011).
DOI: 10.1063/1.3551582
Google Scholar
[32]
N.D. Thorat, O.M. Lemine, R.A. Bohara, K. Omri, L. El Mir, S.A.M. Tofail, Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications, Physical Chemistry Chemical Physics, 18 (2016) 21331-21339.
DOI: 10.1039/c6cp03430f
Google Scholar
[33]
Nooshin Naderi, Farnaz Lalebeigi, Zahra Sadat, Reza Eivazzadeh-Keihan, Ali Maleki, Mohammad Mahdavi, Recent advances on hyperthermia therapy applications of carbon-based nanocomposites, Colloids and Surfaces B: Biointerfaces 228 (2023) 113430
DOI: 10.1016/j.colsurfb.2023.113430
Google Scholar
[34]
Elamin, M.R., B.Y. Abdulkhair, and A.O.J.A.S.E.J. Elzupir, Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Engineering Journal 14(1) 2023. p.101844.
DOI: 10.1016/j.asej.2022.101844
Google Scholar
[35]
P. Martins, C. M. Costa, G. Botelho, S. Lanceros-Mendez, J. M. Barandiaran, et J. Gutierrez, « Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites », Mater. Chem. Phys., vol. 131, no 3, p.698‑705, janv. 2012.
DOI: 10.1016/j.matchemphys.2011.10.037
Google Scholar
[36]
A. Altomare et al., « Automatic structure determination from powder data with EXPO2004 », J. Appl. Crystallogr., vol. 37, no 6, p.1025‑1028, 2004.
DOI: 10.1107/s0021889804021417
Google Scholar
[37]
Kandori K., Ohkoshi N., Yasukawa A.,Ishikawa T., J. Mater. Res. 13 (1998) 1698-1706
Google Scholar
[38]
S.A. Hassanzadeh-Tabrizi, Precise calculation of crystallite size of nanomaterials: A review, Journal of Alloys and Compounds, Volume 968, 2023, 171914
DOI: 10.1016/j.jallcom.2023.171914
Google Scholar
[39]
E. C. Stoner and E. P. Wohlfarth, Magnetics, IEEE Transactions on 27 (4), 3475-3518 (1991).
Google Scholar
[40]
Adhistinka Jiananda, Emi Kurnia Saria, Dyah Ayu Larasatia, Rivaldo Marsel Tumbelaka, Harlina Ardiyantia, Mahardika Yoga Darmawana, Nurul Imani Istiqomaha, Sunaryonoc, Sigit Tri Wicaksonod, Edi Suharyadia, "Optical, microstructural, and magnetic hyperthermia properties of green-synthesized Fe3O4/carbon dots nanocomposites utilizing Moringa oleifera extract and watermelon rinds". CarbonTrends13(2023)100305
DOI: 10.1016/j.cartre.2023.100305
Google Scholar
[41]
Amit B. Tewari, Ritu Sharma, Deepika Sharma, "Magnetic hyperthermia cancer therapy using rare earth metal-based nanoparticles: An investigation of Lanthanum strontium Manganite's hyperthermic properties" , Results in Engineering 20 (2023) 101537
DOI: 10.1016/j.rineng.2023.101537
Google Scholar
[42]
Pelayo García-Acevedoa, Zulema Vargas-Osorio, Brenda Velasco, Manuel A. Gonzalez-G´ omez, Angela Arnosa-Prieto, Lisandra de Castro-Alves, Ramon Iglesias-Reyd, Pablo Taboada, Yolanda Pineiroa, Jose Rivas, "Simple thermal treatment to improve the MRI and magnetic hyperthermia performance of hybrid iron Oxide-Mesoporous silica nanocarriers", Journalof Molecular Liquids 398(2024)124299
DOI: 10.1016/j.molliq.2024.124299
Google Scholar
[43]
N. Bentarhlia, M. Elansary, M. Belaiche, Y. Mouhib, O.M. Lemine , H. Zaher, A. Oubihi, B. Kartah, H. Monfalouti, "Evaluating of novel Mn–Mg–Co ferrite nanoparticles for biomedical applications: From synthesis to biological activities", Ceramics International, 49(2023), Pages 40421-40434
DOI: 10.1016/j.ceramint.2023.10.017
Google Scholar