[1]
Y. Zhu et al., "Graphene and graphene oxide: synthesis, properties, and applications," Advanced materials, vol. 22, no. 35, pp.3906-3924, 2010.
DOI: 10.1002/adma.201001068
Google Scholar
[2]
K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, and A. Zettl, "Determination of the local chemical structure of graphene oxide and reduced graphene oxide," Advanced materials, vol. 22, no. 40, pp.4467-4472, 2010.
DOI: 10.1002/adma.201000732
Google Scholar
[3]
E. Pargoletti et al., "Tuning the Interlayer Distance of Graphene Oxide as a Function of the Oxidation Degree for o‐Toluidine Removal," Advanced Materials Interfaces, p.2300179, 2023.
DOI: 10.1002/admi.202300179
Google Scholar
[4]
C. Costinas et al., "Insights into the Stability of Graphene Oxide Aqueous Dispersions," Nanomaterials, vol. 12, no. 24, p.4489, 2022.
DOI: 10.3390/nano12244489
Google Scholar
[5]
W. Gao, "The chemistry of graphene oxide," Graphene oxide: reduction recipes, spectroscopy, and applications, pp.61-95, 2015.
DOI: 10.1007/978-3-319-15500-5_3
Google Scholar
[6]
S. Schöche et al., "Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry," Applied Surface Science, vol. 421, pp.778-782, 2017.
DOI: 10.1016/j.apsusc.2017.01.035
Google Scholar
[7]
F. Perreault, A. F. De Faria, S. Nejati, and M. Elimelech, "Antimicrobial properties of graphene oxide nanosheets: why size matters," ACS nano, vol. 9, no. 7, pp.7226-7236, 2015.
DOI: 10.1021/acsnano.5b02067
Google Scholar
[8]
G. Venugopal, K. Krishnamoorthy, R. Mohan, and S.-J. Kim, "An investigation of the electrical transport properties of graphene-oxide thin films," Materials Chemistry and Physics, vol. 132, no. 1, pp.29-33, 2012.
DOI: 10.1016/j.matchemphys.2011.10.040
Google Scholar
[9]
L. Liu, J. Zhang, J. Zhao, and F. Liu, "Mechanical properties of graphene oxides," Nanoscale, vol. 4, no. 19, pp.5910-5916, 2012.
Google Scholar
[10]
K. Chakraborty, T. Pal, and S. Ghosh, "RGO-ZnTe: a graphene based composite for tetracycline degradation and their synergistic effect," ACS Applied Nano Materials, vol. 1, no. 7, pp.3137-3144, 2018.
DOI: 10.1021/acsanm.8b00295
Google Scholar
[11]
J. Lee, J. Kim, S. Kim, and D.-H. Min, "Biosensors based on graphene oxide and its biomedical application," Advanced drug delivery reviews, vol. 105, pp.275-287, 2016.
DOI: 10.1016/j.addr.2016.06.001
Google Scholar
[12]
V. Channu, R. Bobba, and R. Holze, "Graphite and graphene oxide electrodes for lithium ion batteries," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 436, pp.245-251, 2013.
DOI: 10.1016/j.colsurfa.2013.06.018
Google Scholar
[13]
G. Z. Kyzas, E. A. Deliyanni, and K. A. Matis, "Graphene oxide and its application as an adsorbent for wastewater treatment," Journal of Chemical Technology & Biotechnology, vol. 89, no. 2, pp.196-205, 2014.
DOI: 10.1002/jctb.4220
Google Scholar
[14]
J. Duchet, R. Legras, and S. Demoustier-Champagne, "Chemical synthesis of polypyrrole: structure–properties relationship," Synthetic metals, vol. 98, no. 2, pp.113-122, 1998.
DOI: 10.1016/s0379-6779(98)00180-5
Google Scholar
[15]
K. Lota, G. Lota, A. Sierczynska, and I. Acznik, "Carbon/polypyrrole composites for electrochemical capacitors," Synthetic Metals, vol. 203, pp.44-48, 2015.
DOI: 10.1016/j.synthmet.2015.02.014
Google Scholar
[16]
M. R. Miah et al., "Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review," Sensors and Actuators A: Physical, vol. 347, p.113933, 2022.
DOI: 10.1016/j.sna.2022.113933
Google Scholar
[17]
J. Pomposo, J. Rodrıguez, and H. Grande, "Polypyrrole-based conducting hot melt adhesives for EMI shielding applications," Synthetic Metals, vol. 104, no. 2, pp.107-111, 1999.
DOI: 10.1016/s0379-6779(99)00061-2
Google Scholar
[18]
J. Mahmood, N. Arsalani, S. Naghash-Hamed, Z. Hanif, and K. E. Geckeler, "Preparation and characterization of hybrid polypyrrole nanoparticles as a conducting polymer with controllable size," Scientific Reports, vol. 14, no. 1, p.11653, 2024.
DOI: 10.1038/s41598-024-61587-1
Google Scholar
[19]
A. Thadathil, H. Pradeep, D. Joshy, Y. A. Ismail, and P. Periyat, "Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications," Materials Advances, vol. 3, no. 7, pp.2990-3022, 2022.
DOI: 10.1039/d2ma00022a
Google Scholar
[20]
Z. Wang, L. Mo, S. Zhao, J. Li, S. Zhang, and A. Huang, "Mechanically robust nacre-mimetic framework constructed polypyrrole-doped graphene/nanofiber nanocomposites with improved thermal electrical properties," Materials & Design, vol. 155, pp.278-287, 2018.
DOI: 10.1016/j.matdes.2018.06.004
Google Scholar
[21]
Y. Li, M. Jiao, and M. Yang, "In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids," Sensors and Actuators B: chemical, vol. 238, pp.596-604, 2017.
DOI: 10.1016/j.snb.2016.07.089
Google Scholar
[22]
M. Mallouki et al., "Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage," Journal of Solid State Electrochemistry, vol. 11, pp.398-406, 2007.
DOI: 10.1007/s10008-006-0161-8
Google Scholar
[23]
A. Raza, M. Tahir, A. Nasir, T. Yasin, and M. Nadeem, "Sepiolite grafted polypyrrole: Influence of degree of grafting on structural, thermal, and impedance properties of nanohybrid," Journal of Applied Polymer Science, vol. 137, no. 37, p.49085, 2020.
DOI: 10.1002/app.49085
Google Scholar
[24]
C. Chern, "Emulsion polymerization mechanisms and kinetics," Progress in polymer science, vol. 31, no. 5, pp.443-486, 2006.
DOI: 10.1016/j.progpolymsci.2006.02.001
Google Scholar
[25]
A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, and B. Ahmad, "Synthesis and study of polyaniline grafted graphene oxide nanohybrids," Materials Research Bulletin, vol. 157, p.112006, 2023.
DOI: 10.1016/j.materresbull.2022.112006
Google Scholar
[26]
A. Sadiq, F. Saleem, S. Mumtaz, A. Nasir, and T. Yasin, "Synthesis and Study of Free Radical Graft Polymerization of Glycidyl Methacrylate on Gamma-Irradiated Graphene Oxide," Materials Today Communications, p.109433, 2024.
DOI: 10.1016/j.mtcomm.2024.109433
Google Scholar
[27]
A. Nasir, A. Raza, M. Tahir, and T. Yasin, "Free-radical graft polymerization of acrylonitrile on gamma irradiated graphene oxide: Synthesis and characterization," Materials Chemistry and Physics, vol. 246, p.122807, 2020.
DOI: 10.1016/j.matchemphys.2020.122807
Google Scholar
[28]
Z. S. Pour and M. Ghaemy, "Polymer grafted graphene oxide: for improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite," Composites Science and Technology, vol. 136, pp.145-157, 2016.
DOI: 10.1016/j.compscitech.2016.10.014
Google Scholar
[29]
H. Kong, "Hybrids of carbon nanotubes and graphene/graphene oxide," Current Opinion in Solid State and Materials Science, vol. 17, no. 1, pp.31-37, 2013.
DOI: 10.1016/j.cossms.2012.12.002
Google Scholar
[30]
E. F. Joel and G. Lujanienė, "Progress in Graphene Oxide Hybrids for Environmental Applications," Environments, vol. 9, no. 12, p.153, 2022.
DOI: 10.3390/environments9120153
Google Scholar
[31]
A. Nasir, M. Inaam-ul-Hassan, A. Raza, M. Tahir, and T. Yasin, "Removal of copper using chitosan beads embedded with amidoxime grafted graphene oxide nanohybids," International Journal of Biological Macromolecules, vol. 222, pp.750-758, 2022.
DOI: 10.1016/j.ijbiomac.2022.09.188
Google Scholar
[32]
A. Nasir, S. Khalid, A. Mazare, and T. Yasin, "Non-enzymatic hydrogen peroxide detection on a novel nanohybrid composite of chitosan and grafted graphene oxide," Materials Research Bulletin, vol. 167, p.112427, 2023.
DOI: 10.1016/j.materresbull.2023.112427
Google Scholar
[33]
B. Zhang et al., "Preparation of polymer decorated graphene oxide by γ-ray induced graft polymerization," Nanoscale, vol. 4, no. 5, pp.1742-1748, 2012.
Google Scholar
[34]
Y. Tan and K. Ghandi, "Kinetics and mechanism of pyrrole chemical polymerization," Synthetic metals, vol. 175, pp.183-191, 2013.
DOI: 10.1016/j.synthmet.2013.05.014
Google Scholar
[35]
K. Tanaka, T. Shichiri, M. Toriumi, and T. Yamabe, "Theoretical study of polymerization of pyrrole," Synthetic metals, vol. 30, no. 3, pp.271-281, 1989.
DOI: 10.1016/0379-6779(89)90650-4
Google Scholar
[36]
L. Guyard, P. Hapiot, and P. Neta, "Redox chemistry of bipyrroles: Further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles," The Journal of Physical Chemistry B, vol. 101, no. 29, pp.5698-5706, 1997.
DOI: 10.1021/jp9706083
Google Scholar
[37]
J. K. Laha, M. Kaur Hunjan, S. Hegde, and A. Gupta, "Aroylation of electron-rich pyrroles under Minisci reaction conditions," Organic letters, vol. 22, no. 4, pp.1442-1447, 2020.
DOI: 10.1021/acs.orglett.0c00041
Google Scholar
[38]
I. Cha et al., "Grafting of polymers onto graphene oxide by trapping of polymer radicals and ligand-exchange reaction of polymers bearing ferrocene moieties," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 441, pp.474-480, 2014.
DOI: 10.1016/j.colsurfa.2013.10.002
Google Scholar
[39]
S. Minko, "Grafting on solid surfaces:"grafting to" and "grafting from" methods," in Polymer surfaces and interfaces: characterization, modification and applications: Springer, 2008, pp.215-234.
DOI: 10.1007/978-3-540-73865-7_11
Google Scholar
[40]
J. Pinson, "Functionalization of Polymers by Reaction of Radicals, Nitrenes, and Carbenes," Surface Modification of Polymers: Methods and Applications, pp.241-271, 2019.
DOI: 10.1002/9783527819249.ch9
Google Scholar
[41]
A. Ramaprasad, D. Latha, and V. Rao, "Synthesis and characterization of polypyrrole grafted chitin," Journal of physics and chemistry of solids, vol. 104, pp.169-174, 2017.
DOI: 10.1016/j.jpcs.2017.01.017
Google Scholar
[42]
T. Okaya, A. Suzuki, and K. Kikuchi, "Importance of grafting in the emulsion polymerization of MMA using PVA as a protective colloid. Effect of initiators," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 153, no. 1-3, pp.123-125, 1999.
DOI: 10.1016/s0927-7757(98)00432-4
Google Scholar
[43]
P. Wongthong, C. Nakason, Q. Pan, G. L. Rempel, and S. Kiatkamjornwong, "Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride," European Polymer Journal, vol. 49, no. 12, pp.4035-4046, 2013.
DOI: 10.1016/j.eurpolymj.2013.09.009
Google Scholar
[44]
M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, "Single-layer graphene nanosheets with controlled grafting of polymer chains," Journal of Materials Chemistry, vol. 20, no. 10, pp.1982-1992, 2010.
DOI: 10.1039/b919078c
Google Scholar
[45]
A. Bhattacharya and B. Misra, "Grafting: a versatile means to modify polymers: techniques, factors and applications," Progress in polymer science, vol. 29, no. 8, pp.767-814, 2004.
DOI: 10.1016/j.progpolymsci.2004.05.002
Google Scholar
[46]
P. Hansson and B. Lindman, "Surfactant-polymer interactions," Current opinion in colloid & interface science, vol. 1, no. 5, pp.604-613, 1996.
DOI: 10.1016/s1359-0294(96)80098-7
Google Scholar
[47]
T. Tadros, "Polymeric surfactants in disperse systems," Advances in Colloid and Interface Science, vol. 147, pp.281-299, 2009.
DOI: 10.1016/j.cis.2008.10.005
Google Scholar
[48]
L. Bin, Z. Wei, X. Zhenhua, C. Xiaojiao, and C. Yong, "FTIR and XRD microscopic characterisation of coal samples with different degrees of metamorphism," Journal of Molecular Structure, vol. 1309, p.138270, 2024.
DOI: 10.1016/j.molstruc.2024.138270
Google Scholar
[49]
X. Chen et al., "Rapid thermal decomposition of confined graphene oxide films in air," Carbon, vol. 101, pp.71-76, 2016.
Google Scholar
[50]
M. Kotal, S. K. Srivastava, and B. Paramanik, "Enhancements in conductivity and thermal stabilities of polypyrrole/polyurethane nanoblends," The Journal of Physical Chemistry C, vol. 115, no. 5, pp.1496-1505, 2011.
DOI: 10.1021/jp1081643
Google Scholar