Specific Heat Analysis of Water and Ethylene Glycol Based rGO-ND Hybrid Nanofluids: Experimental and Artificial Neural Network Predictions

Article Preview

Abstract:

The isobaric specific heat was measured experimentally for two kind of hybrid nanofluids like water and ethylene glycol based reduced graphene oxide-nanodiamond (rGO-ND) hybrid nanofluids at different particle volume loadings of 0.2%, 0.4%, 0.6%, 0.8% and 1.0%, and in the temperature range from 293 K to 333 K, respectively. The obtained experimental specific heat data was used for the artificial neural network (ANN) algorithms of Support Vector Regression (SVR), and Levenberg-Marquardt (LM) models for the predictions. Results indicated that, the specific heat of water, and ethylene glycol-based hybrid nanofluids at 1.0% vol. of hybrid nanofluid is lowered by 1.09% and 1.10% at a temperature of 333 K, compared to their own base fluids. The SVR and LM models for the specific heat of water-based hybrid nanofluids predict accurately with a correlation coefficient of 0.99849, and 0.99957, similarly, the SVR and LM models for the specific heat of ethylene glycol-based hybrid nanofluids predict accurately with a correlation coefficient of 0.99998, and 0.99906, respectively. The obtained data was compared with other kind of nanofluids data. The polynomial regression equation was proposed for the water and ethylene glycol-based hybrid nanofluids through the SVR model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-109

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mahmoudinezhad, M. Sadi, H. Ghiasirad, A. Arabkoohsar, A comprehensive review on the current technologies and recent developments in high-temperature heat exchangers, Renew. Sustain. Energy Rev. 183 (2023) 113467.

DOI: 10.1016/j.rser.2023.113467

Google Scholar

[2] S.R. Yan, H. Moria, S. Pourhedayat, M. Hashemian, S. Asaadi, H.S. Dizaji, K. Jermsittiparsert, A critique of effectiveness concept for heat exchangers; theoretical-experimental study, Int. J. Heat and Mass Transfer 159 (2020) 120160.

DOI: 10.1016/j.ijheatmasstransfer.2020.120160

Google Scholar

[3] A.S. Ahuja, Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results, J. Applied Physics, 46 (1975) 3408.

DOI: 10.1063/1.322107

Google Scholar

[4] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows FED-vol. 231/MDvol. 66, ASME, New York, 1995, p.99–105.

Google Scholar

[5] W. Ajeeb, R.R.S.T. Silva, S.M.S. Murshed, Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger, Appl. Thermal Eng. 218 (2023) 119321.

DOI: 10.1016/j.applthermaleng.2022.119321

Google Scholar

[6] R. Du, D.D. Jiang, Y. Wang, K.W. Shah, An experimental investigation of CuO/water nanofluid heat transfer in geothermal heat exchanger, Energy and Buildings 227 (2020) 110402.

DOI: 10.1016/j.enbuild.2020.110402

Google Scholar

[7] N. Qian, F. Jiang, J. Chen, Y. Fu, J. Zhang, J. Xu, Heat transfer enhancement by diamond nanofluid in gravity heat pipe for waste heat recovery, Functional Diamond 2 (2022) 236-244.

DOI: 10.1080/26941112.2022.2163594

Google Scholar

[8] H. Irawansyah, A. Ghofur, R. Subagyo, M. Tamjidillah, B.H. Pratama, B. Suroso, B. S. Wibowo, Characterization of heat transfer on concentric tube heat exchanger using ethylene glycol/TiO2 nanofluid, IOP Conf. Series: Materials Science and Engineering 1034 (2021) 012045.

DOI: 10.1088/1757-899x/1034/1/012045

Google Scholar

[9] T.X. Phuoc, M. Massoudi, R.-H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Thermal Sciences, 50 (2011) 12–18.

DOI: 10.1016/j.ijthermalsci.2010.09.008

Google Scholar

[10] K. Elsaid, M.A. Abdelkareem, H.M. Maghrabie, E.T. Sayed, T. Wilberforce, A. Baroutaji, A.G. Olabi, Thermophysical properties of graphene-based nanofluids, Int. J. Thermofluids 10 (2021) 100073.

DOI: 10.1016/j.ijft.2021.100073

Google Scholar

[11] A.H. Alami, M. Ramadan, M. Tawalbeh, S. Haridy, S. Al Abdulla et al. A critical insight on nanofluids for heat transfer enhancement, Scientific Reports 13 (2023) 15303.

DOI: 10.1038/s41598-023-42489-0

Google Scholar

[12] Z. Guo, A review on heat transfer enhancement with nanofluids, J. Enhanced Heat Transfer 27 (2020) 1-70.

Google Scholar

[13] N.S. Pandya, H. Shah, M. Molana, A.K. Tiwari, Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review, European Journal of Mechanics - B/Fluids 81 (2020) 173-190.

DOI: 10.1016/j.euromechflu.2020.02.004

Google Scholar

[14] F. Mebarek-Oudina, L. Chabani, Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures, J. Nanofluids 11 (2022) 155-168.

DOI: 10.1166/jon.2022.1834

Google Scholar

[15] A.Y. Bhat, A. Qayoum, Viscosity of CuO nanofluids: Experimental investigation and modelling with FFBP-ANN, Thermochimica Acta 714 (2022) 179267.

DOI: 10.1016/j.tca.2022.179267

Google Scholar

[16] M.H. Ahmadi, B. Mohseni-Gharyehsafa, M. Ghazvini et al. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid, J. Therm. Anal. Calorim. 139 (2020) 2585–2599.

DOI: 10.1007/s10973-019-08762-z

Google Scholar

[17] S. Chakraborty, P.K. Panigrahi, Stability of nanofluid: A review, Applied Thermal Engineering 174 (2020) 115259.

DOI: 10.1016/j.applthermaleng.2020.115259

Google Scholar

[18] W.T. Urmi, M.M. Rahman, K. Kadirgama, D. Ramasamy, M.A. Maleque, An overview on synthesis, stability, opportunities and challenges of nanofluids, Materials Today: Proceedings 41 (2021) 30-37.

DOI: 10.1016/j.matpr.2020.10.998

Google Scholar

[19] H. Adun, I. Wole-Osho, E.C. Okonkwo, D. Kavaz, M. Dagbasi, A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications, J. Molecular Liquids 340 (2021) 116890.

DOI: 10.1016/j.molliq.2021.116890

Google Scholar

[20] N. Jamil, J. Kaur, A.K. Pandey, S. Shahabuddin et al. A review on nano enhanced phase change materials: an enhancement in thermal properties and specific heat capacity, J. Adv. Research in Fluid Mechanics and Thermal Sci. 57(1), 110–120.

Google Scholar

[21] S.M.S. Murshed, Determination of effective specific heat of nanofluids, J. Exp. Nanoscience, 6 (2011) 539–546.

Google Scholar

[22] D. Cabaleiro, C. Gracia-Fernandez, J.L. Legido, L. Lugo, Specific heat of metal oxide nanofluids at high concentrations for heat transfer, Int. J. Heat and Mass Transfer 88 (2015) 872–879.

DOI: 10.1016/j.ijheatmasstransfer.2015.04.107

Google Scholar

[23] Y. Zhang, X. Xu, Machine learning specific heat capacities of nanofluids containing CuO and Al2O3, AIChE Journal 67 (2021) e17289.

DOI: 10.1002/aic.17289

Google Scholar

[24] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11 (2) (1998) 151–170.

DOI: 10.1080/08916159808946559

Google Scholar

[25] S.-Q. Zhou, R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett. 92 (2008) 093123.

Google Scholar

[26] I. Wole-Osho, E.C. Okonkwo, D. Kavaz, S. Abbasoglu, An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids, Powder Technology 363 (2020) 699–716.

DOI: 10.1016/j.powtec.2020.01.015

Google Scholar

[27] L.-P. Zhou, X.-Z. Du, B.-X. Wang, Y.-P. Yang, X.-F. Peng, On the specific heat capacity of cuo nanofluid, Adv. Mech. Eng. 2 (2009) 172085.

Google Scholar

[28] T.P. Teng, Y.H. Hung, Estimation and experimental study of the density and specific heat for alumina nanofluid, J. Exp. Nanoscience 9 (2014) 707–718.

DOI: 10.1080/17458080.2012.696219

Google Scholar

[29] R.S. Vajjha, D.K. Das, Specific heat measurement of three nanofluids and development of new correlations, J. Heat Transfer 131 (2009) 071601.

DOI: 10.1115/1.3090813

Google Scholar

[30] H. O'Hanley, J. Buongiorno, T. McKrell, L. Hu, Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry, Adv. Mech. Eng. 4 (2012) 181079.

DOI: 10.1155/2012/181079

Google Scholar

[31] L.S. Sundar, S. Sambasivam, H.K. Mewada, ANFIS modelling with fuzzy C-mean clustering of experimentally evaluated thermophysical properties of zirconia-water nanofluids, J. Molecular Liquids 364 (2022) 119987.

DOI: 10.1016/j.molliq.2022.119987

Google Scholar

[32] K.M. Yashawantha, A. Venu Vinod, ANFIS modelling of effective thermal conductivity of ethylene glycol and water nanofluids for low temperature heat transfer application, Thermal Science and Engineering Process 24 (2021) 100936.

DOI: 10.1016/j.tsep.2021.100936

Google Scholar

[33] M.H. Esfe, Thermal conductivity modeling of aqueous CuO nanofluids by adaptive neuro-fuzzy inference system (ANFIS) using experimental data, Periodica Polytechnica, Chem. Eng. 62 (2018) 202–208.

DOI: 10.3311/ppch.9670

Google Scholar

[34] M.H. Esfe, S.A. Eftekhari,  M. Hekmatifar, D. Toghraie  A well-trained artificial neural network for predicting the rheological behavior of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid, Scientific Reports 11 (2021) 17696.

DOI: 10.1038/s41598-021-96808-4

Google Scholar

[35] N. Parashar, M. Seraj, S.M. Yahya, M. Anas, Development of an artificial neural network for the prediction of relative viscosity of ethylene glycol based nanofluids, SN Applied Sciences 2 (2020) 1473.

DOI: 10.1007/s42452-020-03269-x

Google Scholar

[36] I.O. Alade, M.A.A. Rahman, Z. Abbas, Y. Yaakob, T.A. Saleh, Application of support vector regression and artificial neural network for prediction of specific heat capacity of aqueous nanofluids of copper oxide, Solar Energy 197 (2020) 485–490.

DOI: 10.1016/j.solener.2019.12.067

Google Scholar

[37] I.O. Alade, M.A.A. Rahman, T.A. Saleh, An approach to predict the isobaric specific heat capacity of nitrides/ethylene glycol-based nanofluids using support vector regression, J. Energy Storage 29 (2020) 101313.

DOI: 10.1016/j.est.2020.101313

Google Scholar

[38] I.O. Alade, M.A.A. Rahman, T.A. Saleh, Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model, Nano-Structures & Nano-Objects 17 (2019) 103–111.

DOI: 10.1016/j.nanoso.2018.12.001

Google Scholar

[39] V. Vapnik, S.E. Golowich, Support vector method for function approximation regression estimation, and signal processing⋅, Adv. Neural Inf. Process. Syst. 9 (1996) 281–287.

Google Scholar

[40] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273–297.

DOI: 10.1007/bf00994018

Google Scholar

[41] J.A.K. Suykens, and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, 9 (1999) 293–300.

Google Scholar

[42] W.S. Hummers, and R.E. Offeman, Preparation of graphitic oxide, J. American Chemical Soc. 80 (1958) 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[43] L.S. Sundar, M.K. Singh, and A.C.M. Sousa, Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures, Diamond & Related Materials 69 (2016) 49-60.

DOI: 10.1016/j.diamond.2016.07.007

Google Scholar

[44] L.S. Sundar, E.V. Ramana, Z. Said, A.M.B. Pereira, and A.C.M. Sousa, Heat transfer of rGO/Co3O4 hybrid nanomaterial based nanofluids and twisted tape configurations in a tube, J. Thermal Science and Engineering Applications, 13 (2021) 031004.

DOI: 10.1115/1.4047827

Google Scholar

[45] L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, J. Electron Spectroscopy and Related Phenomena 195 (2014) 145–154.

DOI: 10.1016/j.elspec.2014.07.003

Google Scholar

[46] L.S. Sundar, M.J. Hortiguela, M.K. Singh, A.C.M. Sousa, Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study, Int. Comm. Heat and Mass Transfer 76 (2016) 245–255.

DOI: 10.1016/j.icheatmasstransfer.2016.05.025

Google Scholar

[47] ASHRAE, Handbook Fundamentals, American Society of Heating, Refrigerating and Air-conditioning Engineers Inc., Atlanta. 2006.

Google Scholar

[48] L.S. Sundar, M.K. Singh, M.C. Ferro, A.C.M. Sousa, Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids, Int. Comm. Heat and Mass Transfer 84 (2017) 1–10.

DOI: 10.1016/j.icheatmasstransfer.2017.03.001

Google Scholar