[1]
H. Li, Z. Kang, Y. Liu, and S.T. Lee, Carbon nanodots- synthesis, properties and applications, Journal of Material Chemistry, 22, 24230 – 24253.(2012)
Google Scholar
[2]
N. Rao, R. Singh, and Bashambu, Carbon-based nanomaterials: Synthesis and prospective applications, Materials Today: Proceedings, 44, 608-614.(2021)
DOI: 10.1016/j.matpr.2020.10.593
Google Scholar
[3]
B.B. Chen, M.L. Liu, C.M. Li, and C.Z. Huang, Fluorescent carbon dots functionalization, Advances in colloids and interface sciences, 270, 165-190.(2019)
Google Scholar
[4]
A.B. Siddique, S.M. Hossain, A.K. Pramanick, and M. Ray, Excitation dependence and independence of photoluminescence in carbon dots and graphene quantum dots: insights into the mechanism of emission, Nanoscale, 13, 16662-16671.(2021)
DOI: 10.1039/d1nr04301c
Google Scholar
[5]
G. Kandasamy, Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications, Journal of Carbon Research, 5, 2.(2019)
DOI: 10.3390/c5020024
Google Scholar
[6]
L. Bao, C. Liu, L,Z. Zhang, and D.W. Pang, Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning, Advanced Materials, 27, 1663-7.(2015)
DOI: 10.1002/adma.201405070
Google Scholar
[7]
Y. Park, J. Yoo, B. Lim, and S.W .Rhee ,Improving the functionality of carbon nanodots: doping and surface functionalization ,Journal of Materials Chemistry A, 4, 11582–11603.(2016)
DOI: 10.1039/c6ta04813g
Google Scholar
[8]
D. Chen, M. Xu, and S. Li, Multi-color fluorescent carbon dots for wavelength-selective and ultrasensitive Cu2+ sensing, Journal of Alloys and Compounds, 701, 75-81.(2017)
DOI: 10.1016/j.jallcom.2017.01.124
Google Scholar
[9]
R. Yadav, Vikas, V. Lahariya, M. Tanwar, R. Kumar, A. Das, and K. Sadhana, A study on the photophysical properties of strong green-fluorescent N-doped carbon dots and application for PH sensing, Diamond and Related Materials,139, 11041.(2023)
DOI: 10.1016/j.diamond.2023.110411
Google Scholar
[10]
F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang, and X. Zhou, Surface modification and chemical functionalization of carbon dots: a review, Microchimica Acta, 185(124), 1-34.(2018)
DOI: 10.1007/s00604-018-2953-9
Google Scholar
[11]
N. Ullal, K. Muthamma, and D. Sunil, Carbon dots from eco-friendly precursors for optical sensing application: an up-to-date review, Chemical papers, 76, 6097–6127.(2022)
DOI: 10.1007/s11696-022-02353-3
Google Scholar
[12]
V. Gude, A. Das, T. Chatterjee, and P.K. Mandal, Molecular origin of photoluminescence of carbon dots: aggregation induced orange-red emission, Physical Chemistry Chemical Physics, 18(40), 28274–80.(2016)
DOI: 10.1039/c6cp05321a
Google Scholar
[13]
S. Chai, L. Zhou, Y. Chi, L. Chen, S. Pei, and B. Chen, Enhanced antibacterial activity with increasing P doping ratio in CQDs, RSC Advances,12, 1116.(2022)
DOI: 10.1039/d2ra04809d
Google Scholar
[14]
J. Wang, Y. Fu, Z. Gu, H. Pan, P. Zhou, Q. Gan, Y. Yuan, and C. Liu, Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic, Small, 20, 2303773.(2023)
DOI: 10.1002/smll.202303773
Google Scholar
[15]
L. Tu, Q. Li, S. Qui, M .Li, J. Shin, P. Wu, N. Singh, J. Li, Q. Ding, C.Hu, X. Xiong, Y. Sun, and J.S. Kim, Recent developments in carbon dots: a biomedical application perspective, Journal of Materials Chemistry B, 11, 3038-3053.(2023)
DOI: 10.1039/d2tb02794a
Google Scholar
[16]
G. Gedda, S.A. Sankaranarayanan, C.L. Putta, K.K. Gudimella, A.K. Rengan, and W.M. Girma, Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications, Scientific Reports, 13, 6371.(2023)
DOI: 10.1038/s41598-023-33652-8
Google Scholar
[17]
S. Liang, M. Wang, W. Gao, and X. Zhao, Effects of elemental doping, acid treatment, and passivation on the fluorescence intensity and emission behavior of yellow fluorescence carbon dots, Optical Materials, 128, 112471.(2022)
DOI: 10.1016/j.optmat.2022.112471
Google Scholar
[18]
A.M. El-Shafey, Carbon dots: Discovery, structure, fluorescent properties, and applications, Green Processing and Synthesis, 10, 134–156.(2021)
DOI: 10.1515/gps-2021-0006
Google Scholar
[19]
R. Das, R. Bandyopadhyay, and P. Pramanik, Carbon quantum dots from natural resource: A review, Materials Today Chemistry, 8 , 96-109.(2018)
DOI: 10.1016/j.mtchem.2018.03.003
Google Scholar
[20]
A.C. Ferrai, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61, 14095–14107.(2000)
DOI: 10.1103/physrevb.61.14095
Google Scholar
[21]
C. Thomas, S .Reich, Double resonant Raman scattering in graphite, Physical Review Letters , 85, 5214-5217.(2000)
DOI: 10.1103/physrevlett.85.5214
Google Scholar
[22]
A. Milayah, R. Carles, and A.M. Yaque, Raman study under resonant conditions of defects near the interface in a GaAs/Si heterostructure, Journal of Applied Physics, 68, 4777–4781.(1990)
DOI: 10.1063/1.346133
Google Scholar
[23]
J.D. Herdman, C.B. Connelly, M.D. Smooke, M.B. Long, and J.H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, 29, 5298-5311.(2011)
DOI: 10.1016/j.carbon.2011.07.050
Google Scholar
[24]
R. Yadav, V. Lahariya, and V .Bansal, Evaluation of Thermal Behaviour and Properties of Carbon Dots Prepared by Green Synthesis, ECS Transactions, 107, 14445–14453.(2022)
DOI: 10.1149/10701.14445ecst
Google Scholar
[25]
A. Yadav, R. Yadav, V. Lahariya, and A.K. Singh, Versatile P-doped carbon quantum dots derived from green precursor: an efficient metal ion sensor and photocatalytic behaviour in aqueous environment, Research on Chemical Intermediates, 50, 1873–1893.(2024)
DOI: 10.1007/s11164-023-05225-x
Google Scholar
[26]
M. Sun, S. Qu, Z. Hao, W.Ji, P.Jing, H. Zhang, L. Zhang, J.Zhao, and D. Shen, towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites, Nanoscales, 6, 13076–13081.(2014)
DOI: 10.1039/c4nr04034a
Google Scholar
[27]
K.M. Omer, D.L. Tofiq, D.D. Ghafoor, highly photoluminescent label free probe for Chromium (II) ions using carbon quantum dots co-doped with nitrogen and phosphorous. Journal of Luminescence, 206, 540-546.(2019)
DOI: 10.1016/j.jlumin.2018.10.100
Google Scholar
[28]
S. Chai, L .Zhou, S. Pei, Z. Zhu, and B. Chen, P-Doped Carbon Quantum Dots with Antibacterial Activity. Micromachines, 12, 1116.(2021).
DOI: 10.3390/mi12091116
Google Scholar
[29]
B. Zhi, M.J. Gallagher, B.P. Frank, T.Y. Lyons, T.A. Qui, J. Da, A.C. MenSch, R.J. Hamers, Z. Rosenzweig, D.H. Fairbrother, and C.L. Haynes, Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact, Carbon, 129, 438-449.(2018)
DOI: 10.1016/j.carbon.2017.12.004
Google Scholar
[30]
R.M. Mathew, J. John, E.S. Zachariah, J. Jose, T. Titus, R. Abraham, A. Josephn, and V. Thomas, Metal free, phosphorus doped carbon nanodot mediated photocatalytic reduction of methylene blue. Reaction Kinetics, Mechanisms and Catalysis, 129, 1131-1143.(2020)
DOI: 10.1007/s11144-020-01724-9
Google Scholar
[31]
D.K. Dang, C. Sundaram, Y.L.T. Ngo, W.M. Choi, J.S. Chung, E.J. Kim, and S.H. Hur, Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determination of 4-nitrophenol, Dyes and Pigments,165, 327-334.(2019)
DOI: 10.1016/j.dyepig.2019.02.029
Google Scholar
[32]
Y.N. Monday, J. Abdullah, N.A. Yusof, S.A. Rashid, and R.H. Shueb, Facile Hydrothermal and Solvothermal Synthesis and Characterization of Nitrogen-Doped Carbon Dots from Palm Kernel Shell Precursor, Applies Sciences, 11, 1630. (2021)
DOI: 10.3390/app11041630
Google Scholar
[33]
N.A.A. Nazri, N.H. Azeman, Y .Luo, and A.A.A. Bakar, Carbon quantum dots for optical sensor applications: A review, Optics and Laser Technology, 139 ,106928.(2021)
DOI: 10.1016/j.optlastec.2021.106928
Google Scholar
[34]
W. Wang, Y. Li, L. Cheng, Z. Cao, and W. Liu, Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labelling ,Journal of Material Chemistry B, 2, 46–48.(2014)
DOI: 10.1039/c3tb21370f
Google Scholar
[35]
J.M. Jacob, R. Rajan, M. Aji, G.G. Kurup, and A. Pugazhendhi, Bio-inspired ZnS quantum dots as efficient photo catalysts for the degradation of Methylene Blue in aqueous phase,Ceramics International, 45(4), 4857-4862.(2019)
DOI: 10.1016/j.ceramint.2018.11.182
Google Scholar
[36]
M. Kaur, M. Bhattacharya, and B. Maity, Green transformation of biomass-derived Indian gooseberry into fluorescent intrinsic nitrogen functionalized carbon quantum dots for real-time detection of vitamin B2 in the nanomolar range, RSC Sustainability, 2, 1472.(2024)
DOI: 10.1039/d3su00456b
Google Scholar
[37]
J. Goswani, S. S. Rohman, A. K. Guha, P. Basyach, K. Sonowal, S.P .Borah ,L. Saikia and P. Hazarika, Phosphoric acid assisted synthesis of fluorescent carbon dots from waste biomass for detection of Cr(VI) in aqueous media, Materials chemistry and Physics, 286, 126133.(2022)
DOI: 10.1016/j.matchemphys.2022.126133
Google Scholar
[38]
X .Wen, P .Yu, Y.R. Toh ,X. Ma, and J. Tang, On the up-conversion fluorescence in carbon nanodots and graphene quantum dots, Chemical Communications, 50, 4703–4706.(2014)
DOI: 10.1039/c4cc01213e
Google Scholar
[39]
C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates, Color Research and Application, 17, 142–144.(1992)
DOI: 10.1002/col.5080170211
Google Scholar
[40]
C.V. Raju, G. Kalaiyarasan, S. Paramasivam, J. Joseph, S.S .Kumar, Phosphorous doped carbon quantum dots as an efficient solid state electrochemiluminescence platform for highly sensitive turn-on detection of Cu2 + ions, Electrochimica Acta, 331, 135391.(2020)
DOI: 10.1016/j.electacta.2019.135391
Google Scholar