Influence of Current Density on the Morphology and Structure of Silver Nanoparticles on Anodized Titanium for Biomedical Implant Applications

Article Preview

Abstract:

This article focused on investigating the influence of current density on the morphology and structure of silver nanoparticles (n-Ag) electrodeposited on anodized titanium substrates (denoted as TiO2/Ti) on the surface. The TiO2/Ti substrate served as the cathodic electrode placed in an electrolyte solution containing ionic [Ag(NH3)2]+ complex solution. The n-Ag/TiO2/Ti samples were synthesized at current densities ranging from 0.2 A/dm2 to 0.5 A/dm2 for 20 seconds at room temperature. The study performed morphological and surface composition analysis of n-Ag/TiO2/Ti using Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD) techniques. Additionally, the study assessed the electrochemical properties using the AutoLab system with Nova 2.1 software, based on Tafel curve measurements to compare the corrosion resistance of the samples before and after modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-62

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, Titanium in Biomedical Applications – Properties and Fabrication: A Review. J. Biomater. Tissue Eng., 5 (2015) 593.

DOI: 10.1166/jbt.2015.1361

Google Scholar

[2] I.A.B. Neta, M. F. Mota, H.L. Lira, G. A. Neves and R.R. Menezes: Nanostructured titanium dioxide for use in bone implants: a short review, Cerâmica 66 (2020) 440.

DOI: 10.1590/0366-69132020663802905

Google Scholar

[3] M. Textor, C. Sittig, V. Frauchiger, S. Tosatti and D. M. Brunette, Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys. Springer-Verlag Berlin Heidelberg. 7 (2021) 171.

DOI: 10.1007/978-3-642-56486-4_7

Google Scholar

[4] K. Indira, U. K. Mudali, T. Nishimura and N. Rajendran, A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications, J Bio Tribo Corros, 1(2015) 1-28.

DOI: 10.1007/s40735-015-0024-x

Google Scholar

[5] Z. Li, J. Pan, H. Bian, J. Lu and Y.Y. Li, New explanation on formation mechanism of anodic TiO2 nanotubes, J. mater. sci. eng., B, 286 (2022) 115985.

DOI: 10.1016/j.mseb.2022.115985

Google Scholar

[6] L.V. Toan, T.Q. Tuan, P.H. Vuong, Effect of current density on the morphology and electrochemical properties of nanotubular TiO2 for implant applications, Material Research Express, 11 (2024) 065404-065416.

DOI: 10.1088/2053-1591/ad5643

Google Scholar

[7] T.Q. Tuan, L.V. Toan, P.H. Vuong, Synthesis of Heterostructured TiO2 Nanopores/Nanotubes by Anodizing at High Voltages, Materials MPDI. 17 (2024) 3347–3354.

DOI: 10.3390/ma17133347

Google Scholar

[8] A. Krzakała, K. Słuzalska, G. Derczc, A. Macieja, A. Kazek, J. Szade, A. Winiarskid, M. Dudeke, J. Michalskaf, G. Tylko, A. M. Osyczkab, W. Simka, Characterisation of bioactive films on Ti–6Al–4V alloy. Electrochimica Acta 104 (2013) 425-439.

DOI: 10.1016/j.electacta.2012.12.081

Google Scholar

[9] K. Gulati, S. Ramakrishnan, M. Sinn Aw, G. J. Atkins, D. M. Findlay, D. Losic: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomaterialia 8 (2012) 449.

DOI: 10.1016/j.actbio.2011.09.004

Google Scholar

[10] J.W.J. Hamilton, J.A. Byrne, C. McCullagh and P.S.M. Dunlop, Electrochemical Investigation of Doped Titanium Dioxide. Int. J. Photoenergy. 1 (2008) 1.

DOI: 10.1155/2008/631597

Google Scholar

[11] H. Yu, J. Chen, S. Zhang, Y. Yu, S. Wang and M. Ye, Effects of electrolyte composition on the growth and properties of titanium oxide nanotubes. Electrochem. Commun. 135 (2022) 107217.

DOI: 10.1016/j.elecom.2022.107217

Google Scholar

[12] Y. Zhang, C. Dong, S. Yan, T. Chiu, J. Wu, K. Xiao, Y. Huang and X. Li, Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect, J. Biomater. Appl., 0(0) (2018) 1-11.

DOI: 10.1177/0885328218755538

Google Scholar

[13] L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li, M. MQ. Xing, Nanosilver particles in medical applications: synthesis, performance, and toxicity, International Journal of Nanomedicine Dovepress, 9 (2014) 2399 - 2407.

DOI: 10.2147/ijn.s55015

Google Scholar

[14] T. Yetim, Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution, J. Bionic Eng., 13 (2016) 398 – 405.

DOI: 10.1016/s1672-6529(16)60311-6

Google Scholar

[15] S. Demircia, T. Dikicib, M. Yurddaskal, S. Gultekind, M. Toparli, E. Celik, Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances, Applied Surface Science 390 (2016) 591–601.

DOI: 10.1016/j.apsusc.2016.08.145

Google Scholar

[16] P. Singh, S. Singh, B. Maddiboyina, S. Kandalam, T. Walski, R. A. Bohara, Hybrid silver nanoparticles: Modes of synthesis and various biomedical applications, Electron. 22(2024)1-23

DOI: 10.1002/elt2.22

Google Scholar

[17] I.J. Ferrer, J.R. Ares, J.M. Clamagirand, M. Barawi, C. Sánchez, Optical properties of titanium trisulphide (TiS3) thin films, Thin Solid Films, 535 ( 2013) 398-401.

DOI: 10.1016/j.tsf.2012.10.033

Google Scholar

[18] H. Xu, G. Li, G. Zhu, K. Zhu, S. Jin, Enhanced photocatalytic degradation of rutile/anatase TiO2 heterojunction nanoflowers, Catal. Commun, 62 (2015) 52-56.

DOI: 10.1016/j.catcom.2015.01.001

Google Scholar

[19] J. Xu, J. Hu, C. Peng, H. Liu, Y. Hu, A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant, Journal of Colloid and Interface Science, 298 (2006) 689-693.

DOI: 10.1016/j.jcis.2005.12.047

Google Scholar

[20] A. Campero and J. A. D. Ponce, Relationship between the Atomic Structure and Electrochemistry. 1.Electric Force, Standard Reduction Potential E°, and StandardReaction Gibbs Free Energy ΔG°, ACS Omega, 5 (2020) 11874-12582.

DOI: 10.1021/acsomega.0c00257

Google Scholar