Prospects for the of Use Ash and Slag Waste of Thermal Power Plants as Raw Materials for the Extraction of Vanadium and Nickel Compounds

Article Preview

Abstract:

The scope of generation, accumulation and use of ash and slag waste of thermal power plants in different countries has been analyzed. The results of the study of the phase, mineralogical and chemical composition of ash and slag waste obtained with the dominance of solid and liquid fuel in the energy balance have been presented. It has been shown that the newly formed and previously accumulated ashes and slags of thermal power plants, with their correct and effective use, are a powerful source of expansion of raw materials in various industries. The existing methods of using ash and slag waste, which have been developed based on their mineral composition and the content of trace elements and impurities in them, have been considered. The most effective application of these wastes is in the construction industry, as well as when used as a raw material for obtaining compounds of rare metals, for example, vanadium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-89

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] «Eurostat regional yearbook 2020 edition» [Electronic resource] https://ec.europa.eu/eurostat/documents/3217494/11348978/KS-HA-20-001-EN-N.pdf

Google Scholar

[2] S. Hryhoriev, A. Petryshchev, N. Sinyaeva, A. Yurchenko, O. Sklyar, S. Kvitka, V. Borysov, V. Vlasiuk, B. Tsymbal, S. Borysova, Studying the physicalchemical properties of alloyed metallurgical waste as secondary resourcesaving raw materials. Eastern-European Journal of Enterprise Technologies. 12 (2018) 43–48.

DOI: 10.15587/1729-4061.2018.140924

Google Scholar

[3] Petryshchev, A., Milko, D., Borysov, V., Tsymbal, B., Hevko, I., Borysova, S., Semenchuk, A. (2019). Studying the physical-chemical transformations at resourcesaving reduction melting of chromenickelcontaining metallurgical waste. Eastern-European Journal of Enterprise Technologies. 2/12 (98) 59–64.

DOI: 10.15587/1729-4061.2019.160755

Google Scholar

[4] V. Volokh, E. Kim, T. Fesenko, A. Petryshchev, S. Artemev, B. Tsymbal, L. Makarenko, A.Hedzyk, V. Slabko, V. Khmelovskyi, Identifying the features of structural and phase transformations in processing the waste of metallurgical products doped with refractory elements. Eastern-European Journal of Enterprise Technologies. 5/12 (2020) 32–38.

DOI: 10.15587/1729-4061.2020.214826

Google Scholar

[5] Statistics: U.S. Percent Share of Selected World Nonfuel Mineral Production, [Electronic resource]. (2022), (1980-2021).

Google Scholar

[6] M. Ahmaruzzaman, A review on the utilization of fly ash. Progress in Energy and Combustion Science. 3 (2010) 327–363.

DOI: 10.1016/j.pecs.2009.11.003

Google Scholar

[7] S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering. 91 1 (2018) 27–33.

DOI: 10.5604/01.3001.0012.9654

Google Scholar

[8] D. Sokolov, V. Sobyna, S. Vambol, V. Vambol, Substantiation of the choice of the cutter material and method of its hardening, working under theaction of friction and cyclic loading. ArchivesofMaterialsScienceandEngineering. 94 2 (2018) 49–54.

DOI: 10.5604/01.3001.0012.8658

Google Scholar

[9] V.M. Loboichenko, A.E., Vasyukov, T.S. Tishakova, Investigations of mineralization of water bodies on the example of river waters of Ukraine. Asian Journal of water, environment and pollution. 14(4) (2017) 37–41.

DOI: 10.3233/ajw-170035

Google Scholar

[10] V. Loboichenko, V. Strelec, The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation. Water and Energy International. l 61RNI 9 (2018) 43–50.

Google Scholar

[11] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, K. Karpets, O. Pirohov, I. Semenyshyna, R. Kapitan, A. Promska, O. Horbov, Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise. 6/4 (102) (2019) 39–46.

DOI: 10.15587/1729-4061.2019.187252

Google Scholar

[12] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, S. Harbuz, Yu. Bezuhla, I. Morozov, A. Kuruch, O. Saliyenko, R. Vasylchenko, Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise. 2/10 (104) (2020) 6–12.

DOI: 10.15587/1729-4061.2020.200140

Google Scholar

[13] Statistics: World Coal Production, Trade, and Demand. (2021) [Electronic resource] https://nma.org/wp-content/uploads/2022/10/int_coal_prod_trade_demand_2021.pdf

Google Scholar

[14] US National Extractive Industries Association Analyst Report «Petroleum Overview» report for 2019 [Electronic resource].

Google Scholar

[15] Statistics: U.S. Coal Production Trends, 1980-2021 [Electronic resource] https://nma.org/wp-content/uploads/2021/10/us_coal_production_trends_(2021)

Google Scholar

[16] US National Extractive Industries Association Analyst Report «Coal Overview» report for 2019 [Electronic resource]. https://www.eia.gov/totalenergy/data/monthly/pdf/sec6_3.pdf

Google Scholar

[17] A.M. Kasimov, N.I. Misyura, A.A. Kovalev, Migraciya tyazhelyh cvetnyh metallov v pochvah rajonov razmeshcheniya zoloshlakovyh otvalov ugol'nyh teplovyh elektrostancij. Ekologiya i promyshlennost'. 1 (2011) 96–99.

Google Scholar

[18] R. C. Bhangare, M. Tiwari, P. Y. Ajmal, S. K. Sahu, G. G. Pandit, Distribution of natural radioactivity in coal and combustion residues of thermal power plants. Journal of Radioanalytical and Nuclear Chemistry. 300/1 (2014) 17–22.

DOI: 10.1007/s10967-014-2942-3

Google Scholar

[19] Y. Danchenko, V. Andronov, E. Barabash, T. Obigenko, E. Rybka, R. Meleshchenko, A. Romin, Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies. 6/12 (90) (2017) 4–12.

DOI: 10.15587/1729-4061.2017.118565

Google Scholar

[20] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, A. Rud, K. Karpets, Y. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies. 6 (10) (2020) 14–22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[21] C. Heidrich, HJ Feuerborn, A. Weir, Coal combustion products – a global perspective VGB. Power Tech. 12 (2013) 46–52.

Google Scholar

[22] Z. T. Yao, X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, A comprehensive review on the applications of coal fly ash. Earth-Science Reviews. 141 (2015) 105–121.

DOI: 10.1016/j.earscirev.2014.11.016

Google Scholar

[23] A.M. Kasimov, A.A. Kovalev, A.V. Povalyaeva, Utilizaciya othodov elektrostancij, rabotayushchih na tverdom i zhidkom toplive. Vostochno-Evropejskij zhurnal peredovyh tekhnologij. 4/8 (46) (2011) 15–20.

Google Scholar

[24] O. Rybalova, S. Artemiev, W. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state. Eastern-European Journal of Enterprise Technologies. 2/10–92 (2018) 4–17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[25] «Ukraine in numbers in 2020» statistical collection – Kiev: State Committee of Statistics of Ukraine, (2021).

Google Scholar

[26] S. Naganathan, N. Subramaniam, K. Nasharuddin bin Mustapha, Development of brick using thermal power plant bottom ash and fly ash. Asian journal of civil engineering (building and housing). 13/2 (2012) 275–287.

Google Scholar

[27] T.I. Krasnenko, V.G. Bamburov, Optimization of the complex recycling of ash and slag from thermal power plants. Khimicheskaya Tekhnologiya. 11/6 (2010) 380–383.

Google Scholar

[28] L.M. Delitsyn, A.S. Vlasov, The need of applying new approaches for using ash produced at coal-fired thermal power stations. Thermal Engineering. 57/4 (2010) 325–331.

DOI: 10.1134/s0040601510040087

Google Scholar

[29] M. Liyanage, D. Jayaranjan, E. D. van Hullebusch, A. P. Annachhatre, Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Bio Technology. 13/4 (2014) 467–486.

DOI: 10.1007/s11157-014-9336-4

Google Scholar

[30] H. Shi, M. Chertow, Y. Song, Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. Journal of Cleaner Production. 18/3 (2010) 191–199.

DOI: 10.1016/j.jclepro.2009.10.002

Google Scholar

[31] S. Vambol, V. Vambol, V. Sobyna, V. Koloskov, L. Poberezhna, Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika. 64/4 (2018) 186–195.

DOI: 10.6001/energetika.v64i4.3893

Google Scholar

[32] A. Q. Vilakazi, S. Ndlovu, L. Chipise, A. Shemi, The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability. 14(4) (2022) 16–28.

DOI: 10.3390/su14041958

Google Scholar

[33] A.M. Kasimov, A.A. Kovalev, Inovacionnaya tekhnologiya izvlecheniya vanadiya iz netradicionnogo vtorichnogo syr'ya. V Mіzhnarodna naukovo-praktichna konferencіya «Teorіya ta praktika virіshennya ekologіchnih problem v metalurgіjnіj ta gіrnicho-vidobuvnіj promislovostі» m. Dnіpropetrovs'k. (2011) 17–22.

Google Scholar

[34] A.S. Meawad, Y. Darinka, B. Yoncho, G. Pelovski, An overview of metals recovery from thermal power plant solid wastes. Waste Management. 30/12 (2010) 2548–255.

DOI: 10.1016/j.wasman.2010.07.010

Google Scholar

[35] D.B. Sarode, R.N. Jadhav, V.A. Khatik, Sopan Tukaram Ingle, Sanjay Baliram Attarde, Extraction and Leaching of Heavy Metals from Thermal Power Plant Fly Ash and Its Admixtures. Polish J. of Environ. Stud. 19/6 (2010) 1325–1330.

Google Scholar

[36] H. Jammulamadaka, S.V. Pisupati, A Critical Review of Extraction Methods for Vanadium from Petcoke Ash. Fuels. 4 (2023) 58–74. https://doi.org/10.3390/ fuels4010005

DOI: 10.3390/fuels4010005

Google Scholar

[37] R.C. Bhangare, P.Y. Ajmal, S.K. Sahu, G.G. Pandit, V.D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology. 86/4 (2011) 349–356.

DOI: 10.1016/j.coal.2011.03.008

Google Scholar

[38] K.V. Goncharov, D.Yu. Kashekov, G.B. Sadykhov, T.V. Olyunina, Processing of fuel oil ash from thermal power plant with extraction of vanadium and nickel. Non-ferrous Metals. 1 (2020) 3–7.

DOI: 10.17580/nfm.2020.01.01

Google Scholar

[39] O. Popov, A. Iatsyshyn, V. Kovach, V. Artemchuk, D. Taraduda, V. Sobyna, D. Sokolov, M. Dement, V. Hurkovskyi, K. Nikolaiev, T. Yatsyshyn, D. Dimitriieva, Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety. 4/84 (2019) article no. 11.

DOI: 10.32918/nrs.2019.4(84).11

Google Scholar

[40] V. Pilipenko, V. Kuprikov, A. Soznik, Microscopic nucleonnucleus optical potential with rearrangement effects based on the effective skyrme forces. International Journal of Modern Physics. 18/9 (2009) 1845–1862.

DOI: 10.1142/s0218301309013907

Google Scholar

[41] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, M. Maksymenko, R. Meleshchenko, Y. Bezuhla, I. Hrachova, R. Nesterenko, A. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies. 4/10 (2020) 37–44.

DOI: 10.15587/1729-4061.2020.210059

Google Scholar

[42] S.Liu, L. Wang, J. Chen, L. Ye, J. Du, Research progress of vanadium extraction processes from vanadium slag: A review. Separation and Purification Technology. 342 21 (2024) 127035.

DOI: 10.1016/j.seppur.2024.127035

Google Scholar

[43] P. Ning, X. Lin, X. Wang, H. Cao, High-efficient extraction of vanadium and its application in the utilization of the chromium-bearing vanadium slag. Chemical Engineering Journal. 301 (2016) 132–138.

DOI: 10.1016/j.cej.2016.03.066

Google Scholar

[44] S. Liu, W. Xue, L. Wang, Extraction of the Rare Element Vanadium from Vanadium Containing, Materials by Chlorination Method: A Critical Review. Metals. 11/1301 (2021).

DOI: 10.3390/met11081301

Google Scholar

[45] A. Kovalev, D. Wainstein, V. Vakhrushev, A. Volkov and U. Kologrieva, Features of the Microstructure and Chemical Compositions of Vanadium-Containing Slags Including Determination of Vanadium Oxidation. Degrees Materials. 12 (2019) 3578.

DOI: 10.3390/ma12213578

Google Scholar

[46] W.C. Song, K. Li, Q. Zheng & H. Li, A Novel Process of Vanadium Extraction from Molten Vanadium Bearing Slag. Waste and Biomass Valorization. 5 (2014) 327–332.

DOI: 10.1007/s12649-013-9286-z

Google Scholar

[47] J. Lee, E. Kim, K.W. Chung, R. Kim, H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production. Journal of Materials Research and Technology. 12 (2021) 343–364.

DOI: 10.1016/j.jmrt.2021.02.065

Google Scholar

[48] A. Petryshchev, N. Braginec, V. Borysov, V. Bratishko, O. Torubara, B. Tsymbal, S. Borysova, L. Lupinovich, A. Poliakov, V. Kuzmenko, Study into the structural-phase transformations accompanying the resource-saving technology of metallurgical waste processing. Eastern-European Journal of Enterprise Technologies. 4/12–100 (2019) 37–42.

DOI: 10.15587/1729-4061.2019.175914

Google Scholar

[49] V. Vambol, Numerical integration of the process of cooling gas formed by thermal recycling of waste. Eastern-European Journal of Enterprise Technologies. 6/8 (84) (2016) 48–53.

DOI: 10.15587/1729-4061.2016.85455

Google Scholar

[50] H.I. Gomes, A. Jones, M. Rogerson, G.M. Greenway, D.F. Lisbona, I.T. Burke, W.M. Mayes, Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins. Journal of Environmental Management. 187 (2017) 384–392.

DOI: 10.1016/j.jenvman.2016.10.063

Google Scholar

[51] H. Jammulamadaka, S.V. Pisupati, A Critical Review of Extraction Methods for Vanadium from Petcoke Ash. Fuels. 4(1) (2023) 58–74.

DOI: 10.3390/fuels4010005

Google Scholar