[1]
Ngatiman, M., Jami, M.S., Abu Bakar, M.R., Subramaniam, V., & Loh, S.K.(2021). Investigation of struvite crystals formed in palm oil mill effluent anaerobic digester. Heliyon, 7(1), e05931.
DOI: 10.1016/j.heliyon.2021.e05931
Google Scholar
[2]
Muys, M., Camara, S. J. G., Derese, S., Spiller, M., Verliefde, A., Vlaeminck, S. E. (2023). Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein. Science of the Total Environment, 866, 161172.
DOI: 10.1016/j.scitotenv.2022.161172
Google Scholar
[3]
Denanot, J. P. (2018). Report on a European strategy for the promotion of protein crops – encouraging the production of protein and leguminous plants in the European agriculture sector (2017/2116(INI)).
Google Scholar
[4]
Ngatiman, M., Jami, M. S., Abu Bakar, M. R., Subramaniam, V., & Loh, S. K. (2018). Scale deposits from palm oil mill effluent (POME) treatment and various other industries: A developmental review. Journal of Oil Palm Research, 30(3), 351-365.
DOI: 10.21894/jopr.2018.0017
Google Scholar
[5]
Chan, Y. J.; Hue, F. S.; Chong, M. F.; Ng, D. K. S.; Lim, D. L. K. (2020). Pre-commercialized integrated anaerobic-aerobic bioreactor (IAAB) for Palm Oil Mill Effluent (POME) treatment and biogas generation. Journal of Oil Palm Environmental Health, 11, 57–66.
DOI: 10.1007/978-981-19-4847-3_12
Google Scholar
[6]
Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46-57.
DOI: 10.1016/j.jenvman.2015.12.006
Google Scholar
[7]
Guan, Q., Li, Y., Zhong, Y., Liu, W., Zhang, J., Yu, X., Ou, R., & Zeng, G. (2023). A review of struvite crystallization for nutrient source recovery from wastewater. Journal of Environmental Management, 344, 118383.
DOI: 10.1016/j.jenvman.2023.118383
Google Scholar
[8]
Ariyanto, E., Sen, T. K., & Ang, H. M. (2014). The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation. Advanced Powder Technology, 25(2), 682-694.
DOI: 10.1016/j.apt.2013.10.014
Google Scholar
[9]
Hao, X., Wang, C., van Loosdrecht, M. C. M., & Hu, Y. (2013). Looking Beyond Struvite for P-Recovery. Environmental Science & Technology, 47(10), 4965–4966.
DOI: 10.1021/es401140s
Google Scholar
[10]
Liu, Y., Kumar, S., Kwag, J.-H., & Ra, C. (2012). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology & Biotechnology, 88(2), 181-189.
DOI: 10.1002/jctb.3936
Google Scholar
[11]
Tansel, B., Lunn, G. M., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504–514.
DOI: 10.1016/j.chemosphere.2017.12.004
Google Scholar
[12]
Loh, S. K., Lai, M. E., Ngatiman, M., Lim, W. S., Choo, Y. M., Zhang, Z., & Salimon, J. (2013). Zero discharge treatment technology of palm oil mill effluent. Journal of Oil Palm Research, 25(3), 273-281.
Google Scholar
[13]
Ariyanto, E., Ang, H. M., & Sen, T. K. (2013). Impact of various physico-chemical parameters on spontaneous nucleation of struvite (MgNH4PO4.6H2O) formation in a wastewater treatment plant: kinetic and nucleation mechanism. Desalination and Water Treatment, 52(34-36), 6620–6631.
DOI: 10.1080/19443994.2013.821042
Google Scholar
[14]
Mohan, G. R., Gadekar, S., & Pullammanappallil, P. (2011). Development of a process model for recovery of nutrients from wastewater by precipitation as struvite. Florida Water Resources Journal, 17-22.
Google Scholar
[15]
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579.
DOI: 10.1016/j.jece.2021.105579
Google Scholar
[16]
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.
DOI: 10.1080/10643380701640573
Google Scholar
[17]
Liu, Y., et al. (2013). "Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review." Journal of Chemical Technology & Biotechnology 88(2): 181-189.
DOI: 10.1002/jctb.3936
Google Scholar
[18]
Sharp, R., Vadiveloo, E., Fergen, R., Moncholi, M., Pitt, P., Wankmuller, D., & Latimer, R. (2013). A Theoretical and Practical Evaluation of Struvite Control and Recovery. Water Environment Research, 85(8), 675–686.
DOI: 10.2175/106143012x13560205145253
Google Scholar
[19]
Li, H., Yu, S.-H., Yao, Q.-Z., Zhou, G.-T., & Fu, S.-Q. (2015). Chemical control of struvite scale by a green inhibitor polyaspartic acid. RSC Advances, 5(111), 91601–91608.
DOI: 10.1039/c5ra17149k
Google Scholar
[20]
Saltnes, T., Sørensen, G., & Eikås, S. (2017). Biological nutrient removal in a continuous biofilm process. Water Practice and Technology, 12(4), 797–805.
DOI: 10.2166/wpt.2017.083
Google Scholar
[21]
Moore, S. E., Ma, L., Potzler, M., Bish, J., Karanikola, V., Prevatt, J., Arnold, R. G., Sáez, A. E. (2018). Sustainable struvite control using carbon dioxide. Journal of Environmental Engineering, 144(12), 04018123.
DOI: 10.1061/(asce)ee.1943-7870.0001466
Google Scholar
[22]
Pesonen, J., Janssens, F., Hu, T., Lassi, U., & Tuomikoski, S. (2022). Precipitation of struvite using MgSO4 solution prepared from sidestream dolomite or fly ash. Heliyon, 8(12), e12580.
DOI: 10.1016/j.heliyon.2022.e12580
Google Scholar
[23]
Critical Raw Materials - CRM Alliance [WWW Document] (2022). Accessed from: http://criticalrawmaterials.org/critical-raw-materials/
Google Scholar
[24]
Aguilar-Pozo, V. B., Chimenos, J. M., Elduayen-Echave, B., Olaciregui-Arizmendi, K., Lopez, A., Gomez, J., Guembe, M., Garcia, I., Ayesa, E., & Astals, S. (2023). Struvite precipitation in wastewater treatment plants anaerobic digestion supernatants using a magnesium oxide by-product. Science of the Total Environment, 890, 164084.
DOI: 10.1016/j.scitotenv.2023.164084
Google Scholar
[25]
Devatha, C. P. & Rashmi, H. R. (2023). Recovery of phosphorus as struvite from the dewatered liquor through crystallization using seawater as magnesium source. Resource Recovery in Municipal Waste Waters, 261-289.
DOI: 10.1016/b978-0-323-99348-7.00015-1
Google Scholar
[26]
Rodrigues, D. M., Carvalho, A. P., Fragoso, R. A., Hein, T., & Brito, A. G. (2022). Bittern-impregnated sisal: An alternative magnesium source for phosphorus recovery through struvite precipitation. Journal of Water Process Engineering, 50, 103227.
DOI: 10.1016/j.jwpe.2022.103227
Google Scholar
[27]
Leng, Y. & Soares, A. (2021). The mechanisms of struvite biomineralization in municipal wastewater. Science of the Total Environment, 799, 149261.
DOI: 10.1016/j.scitotenv.2021.149261
Google Scholar
[28]
Zhang, P., Ding, Y.-M., Zhao, T.-L., Wang, Y.-H., Yao, Q.-Z., Fu, S.-Q., & Zhou, G.-T. (2023). Can phosphobacteria simultaneously achieve phosphorus recovery and Pb2+ removal from wasterwater by biomineralization? Chemical Engineering Journal, 455, 140734.
DOI: 10.1016/j.cej.2022.140734
Google Scholar
[29]
Pepper, I. L., Gentry, T. J. (2015). Environmental Microbiology, Third Edition. Elsevier Inc.
Google Scholar
[30]
Zhao, T.-L., Li, H., Huang, Y.-R., Yao, Q.-Z., Huang, Y., & Zhou, G.-T. (2019). Microbial mineralization of struvite: Salinity effect and its implication for phosphorus removal and recovery. Chemical Engineering Journal, 358, 1324-1331.
DOI: 10.1016/j.cej.2018.10.139
Google Scholar
[31]
Wu, H. & Vaneeckhaute, C. (2022). Nutrient recovery from wastewater: A review on the integrated physicochemical technologies of ammonia stripping, adsorption and struvite precipitation. Chemical Engineering Journal, 433(3), 133664.
DOI: 10.1016/j.cej.2021.133664
Google Scholar
[32]
Ha, T.-H., Mahasti, N. N. N., Lin, C. -S., Lu, M. -C., & Huang, Y. -H. (2023). Enhanced struvite (MgNH4PO4.6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855.
DOI: 10.1016/j.jwpe.2023.103855
Google Scholar
[33]
Muhmood, A., Lu, J., Kadam, R., Dong, R., Guo, J., & Wu, S. (2019). Biochar seeding promotes struvite formation, but accelerated heavy metal accumulation. Science of The Total Environment, 652, 623-632.
DOI: 10.1016/j.scitotenv.2018.10.302
Google Scholar
[34]
Sauter, A., Roosen-Runge, F., Zhang, F., Lotze, G., Feoktystov, A., Jacobs, R. M. J., & Schreiber, F. (2015). On the question of two-step nucleation in protein crystallization. Faraday Discussions, 179, 41–58.
DOI: 10.1039/c4fd00225c
Google Scholar
[35]
Bagastyo, A. Y., Anggrainy, A. D., Khoiruddin, K., Ursada, R., Warmadewanthi, I., Wenten, I. G. (2022). Electrochemically-driven struvite recovery: Prospect and challenges for the application of magnesium sacrificial anode. Separation and Purification Technology, 288, 120653.
DOI: 10.1016/j.seppur.2022.120653
Google Scholar
[36]
Wu, I., Hostert, J. D., Verma, G., Kuo, M. -C., Renner, J. N., & Herring, A. M. (2022). Electrochemical struvite precipitation enhanced by an amelogenin peptide for nutrient recovery. ACS Sustainable Chemistry & Engineering, 10(43), 14322-14329.
DOI: 10.1021/acssuschemeng.2c04691
Google Scholar
[37]
Li, X., Zhou, X., Yang, B., & Wen, Z. (2020). Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite. Chemosphere, 262, 128357.
DOI: 10.1016/j.chemosphere.2020.128357
Google Scholar
[38]
Ebba, M., Asaithambi, P., & Alemayehu, E. (2022). Development of electrocoagulation process for wastewater treatment: Optimization by response surface methodology. Heliyon,, 8(5), e09383.
DOI: 10.1016/j.heliyon.2022.e09383
Google Scholar
[39]
Bisara, D., Iqbal, R., & Hidayat, S. (2020). Treatment of surface water contaminated arsenite using continuous flow air-cathode electrocoagulation. E3S Web of Conferences, 148, 02008.
DOI: 10.1051/e3sconf/202014802008
Google Scholar
[40]
Effendi, A. J., Baashen, M. S., & Hidayat, S. (2022). Nutrient recovery from wastewater through struvite precipitation using air cathode electrocoagulation technology. Air, Soil and Water Research, 15(1).
DOI: 10.1177/11786221221087989
Google Scholar
[41]
Hug, A., & Udert, K. M. (2013). Struvite precipitation from urine with electrochemical magnesium dosage. Water Research, 47(1), 289–299.
DOI: 10.1016/j.watres.2012.09.036
Google Scholar
[42]
Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., Song, Q., & Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrason. Sonochem., 36, 123-128.
DOI: 10.1016/j.ultsonch.2016.11.019
Google Scholar
[43]
Guan, Q., Zeng, G., Song, J., Liu, C., Wang, Z., & Wu, S. (2021). Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. Journal of Environmental Management, 293, 112961.
DOI: 10.1016/j.jenvman.2021.112961
Google Scholar
[44]
Li, X., Zhao, X., Zhang, J., Hao, J., & Zhang, Q. (2022). Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water. Water Research, 221, 118678.
DOI: 10.1016/j.watres.2022.118678
Google Scholar
[45]
Leng, Y. & Soares, A. (2023). Microbial phosphorus removal and recovery by struvite biomineralisation in comparison to chemical struvite precipitation in municipal wastewater. Journal of Environmental Chemical Engineering, 11(2), 109208.
DOI: 10.1016/j.jece.2022.109208
Google Scholar
[46]
Kumari, S., & Jagadevan, S. (2022). Phosphorus recovery from municipal wastewater through struvite biomineralization using model gram-negative and gram-positive bacterial strains. Journal of Cleaner Production, 366, 132992.
DOI: 10.1016/j.jclepro.2022.132992
Google Scholar
[47]
Krishnamoorthy, N., Nzadiegwu, C., Mao, X., Zeng, H., Paramasivan, B., & Chang, S. X. (2023). Biochar seeding properties affect struvite crystallization for soil application. Soil & Environmental Health, 1(2), 100015.
DOI: 10.1016/j.seh.2023.100015
Google Scholar
[48]
Numviyimana, C., Warchol, J., Ligas, B., & Chojnacka, K. (2021). Nutrients recovery from dairy wastewater by struvite precipitation combined with ammonium sorption on clinoptilolite. Materials, 14(19), 5822.
DOI: 10.3390/ma14195822
Google Scholar
[49]
Tai, Y., Wang, L., Hu, Z., Dang, Y., Guo, Y., Ji, X., Hu, W., & Li, M. (2022). Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors. Science of the Total Environment, 843, 156914.
DOI: 10.1016/j.scitotenv.2022.156914
Google Scholar
[50]
Li, X., Zhao, X., Zhou, X., & Yang, B. (2021). Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite. Journal of Cleaner Production, 292, 126039.
DOI: 10.1016/j.jclepro.2021.126039
Google Scholar
[51]
Numviyimana, C., Warchol, J., Khalaf, N., Leahy, J. J., & Chojnacka, K. (2022). Phosphorus recovery as struvite from hydrothermal carbonization liquor of chemically produced dairy sludge by extraction and precipitation. Journal of Environmental Chemical Engineering, 10(1), 106947.
DOI: 10.1016/j.jece.2021.106947
Google Scholar
[52]
Le, G. V., Luu, T. A., Bui, N. T., Mofijur, M., Van, H.T., Lin, C., Tran, H.T., Bahari, M.B., Vu, C.T., & Huang, Y. H. (2022). Fluidized-bed homogenous granulation for potassium and phosphorus recovery: K-struvite release kinetics and economic analysis. Journal of the Taiwan Institute of Chemical Engineers, 139, 104494.
DOI: 10.1016/j.jtice.2022.104494
Google Scholar
[53]
Ramaswamy, J., Solaiappan, V., Albasher, G., Alamri, O., Alsultan, N., & Sathiasivan, K. (2022). Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. Environmental Research, 211, 113011.
DOI: 10.1016/j.envres.2022.113011
Google Scholar
[54]
Trotta, S., Adani, F., Fedele, M., & Salvatori. (2023). Nitrogen and phosphorus recovery from cow digestate by struvite precipitation: Process optimization to maximize phosphorus recovery. Results in Engineering, 20, 101478.
DOI: 10.1016/j.rineng.2023.101478
Google Scholar