Review on Phosphorus Recovery as Struvite from Wastewater

Article Preview

Abstract:

Wastewater treatment plants, particularly anaerobic digesters, face significant challenges related to the deposition of struvite, a mineral scale composed of magnesium ammonium phosphate hexahydrate. The formation and accumulation of struvite can lead to blockages in the treatment system, reducing flow rates and overall plant efficiency. This article explores the necessity of struvite removal for proper plant function and the potential for struvite recovery due to its rich nutrient content, specifically phosphorus and nitrogen, which can be repurposed in agriculture. Struvite recovery not only mitigates mineral deposition problems but also addresses the ecological risks associated with nutrient-rich effluents. The excess nutrients in wastewater effluent can contribute to water pollution, leading to eutrophication, algal blooms, and oxygen depletion, negatively impacting aquatic ecosystems and aquatic life. Furthermore, as the world's phosphorus reserves are finite and depleting, recovering phosphorus from wastewater aids in conserving this non-renewable resource. To facilitate efficient struvite recovery, it is crucial to control the formation of struvite crystals. Key factors affecting this process include pH, temperature, supersaturation, and mixing energy. Understanding the optimal conditions for these parameters is vital for maximizing phosphorus recovery. Various technologies such as chemical precipitation, biomineralization, seeding, ultrasound, and electrochemical are being studied to enhance struvite recovery, offering sustainable and innovative approaches to address this challenge. Overall, this review explores the various techniques and technologies utilized to recover phosphorus in struvite form which contributes to the efficient and sustainable management of wastewater treatment systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-118

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ngatiman, M., Jami, M.S., Abu Bakar, M.R., Subramaniam, V., & Loh, S.K.(2021). Investigation of struvite crystals formed in palm oil mill effluent anaerobic digester. Heliyon, 7(1), e05931.

DOI: 10.1016/j.heliyon.2021.e05931

Google Scholar

[2] Muys, M., Camara, S. J. G., Derese, S., Spiller, M., Verliefde, A., Vlaeminck, S. E. (2023). Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein. Science of the Total Environment, 866, 161172.

DOI: 10.1016/j.scitotenv.2022.161172

Google Scholar

[3] Denanot, J. P. (2018). Report on a European strategy for the promotion of protein crops – encouraging the production of protein and leguminous plants in the European agriculture sector (2017/2116(INI)).

Google Scholar

[4] Ngatiman, M., Jami, M. S., Abu Bakar, M. R., Subramaniam, V., & Loh, S. K. (2018). Scale deposits from palm oil mill effluent (POME) treatment and various other industries: A developmental review. Journal of Oil Palm Research, 30(3), 351-365.

DOI: 10.21894/jopr.2018.0017

Google Scholar

[5] Chan, Y. J.; Hue, F. S.; Chong, M. F.; Ng, D. K. S.; Lim, D. L. K. (2020). Pre-commercialized integrated anaerobic-aerobic bioreactor (IAAB) for Palm Oil Mill Effluent (POME) treatment and biogas generation. Journal of Oil Palm Environmental Health, 11, 57–66.

DOI: 10.1007/978-981-19-4847-3_12

Google Scholar

[6] Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46-57.

DOI: 10.1016/j.jenvman.2015.12.006

Google Scholar

[7] Guan, Q., Li, Y., Zhong, Y., Liu, W., Zhang, J., Yu, X., Ou, R., & Zeng, G. (2023). A review of struvite crystallization for nutrient source recovery from wastewater. Journal of Environmental Management, 344, 118383.

DOI: 10.1016/j.jenvman.2023.118383

Google Scholar

[8] Ariyanto, E., Sen, T. K., & Ang, H. M. (2014). The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation. Advanced Powder Technology, 25(2), 682-694.

DOI: 10.1016/j.apt.2013.10.014

Google Scholar

[9] Hao, X., Wang, C., van Loosdrecht, M. C. M., & Hu, Y. (2013). Looking Beyond Struvite for P-Recovery. Environmental Science & Technology, 47(10), 4965–4966.

DOI: 10.1021/es401140s

Google Scholar

[10] Liu, Y., Kumar, S., Kwag, J.-H., & Ra, C. (2012). Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. Journal of Chemical Technology & Biotechnology, 88(2), 181-189.

DOI: 10.1002/jctb.3936

Google Scholar

[11] Tansel, B., Lunn, G. M., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504–514.

DOI: 10.1016/j.chemosphere.2017.12.004

Google Scholar

[12] Loh, S. K., Lai, M. E., Ngatiman, M., Lim, W. S., Choo, Y. M., Zhang, Z., & Salimon, J. (2013). Zero discharge treatment technology of palm oil mill effluent. Journal of Oil Palm Research, 25(3), 273-281.

Google Scholar

[13] Ariyanto, E., Ang, H. M., & Sen, T. K. (2013). Impact of various physico-chemical parameters on spontaneous nucleation of struvite (MgNH4PO4.6H2O) formation in a wastewater treatment plant: kinetic and nucleation mechanism. Desalination and Water Treatment, 52(34-36), 6620–6631.

DOI: 10.1080/19443994.2013.821042

Google Scholar

[14] Mohan, G. R., Gadekar, S., & Pullammanappallil, P. (2011). Development of a process model for recovery of nutrients from wastewater by precipitation as struvite. Florida Water Resources Journal, 17-22.

Google Scholar

[15] Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579.

DOI: 10.1016/j.jece.2021.105579

Google Scholar

[16] Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.

DOI: 10.1080/10643380701640573

Google Scholar

[17] Liu, Y., et al. (2013). "Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review." Journal of Chemical Technology & Biotechnology 88(2): 181-189.

DOI: 10.1002/jctb.3936

Google Scholar

[18] Sharp, R., Vadiveloo, E., Fergen, R., Moncholi, M., Pitt, P., Wankmuller, D., & Latimer, R. (2013). A Theoretical and Practical Evaluation of Struvite Control and Recovery. Water Environment Research, 85(8), 675–686.

DOI: 10.2175/106143012x13560205145253

Google Scholar

[19] Li, H., Yu, S.-H., Yao, Q.-Z., Zhou, G.-T., & Fu, S.-Q. (2015). Chemical control of struvite scale by a green inhibitor polyaspartic acid. RSC Advances, 5(111), 91601–91608.

DOI: 10.1039/c5ra17149k

Google Scholar

[20] Saltnes, T., Sørensen, G., & Eikås, S. (2017). Biological nutrient removal in a continuous biofilm process. Water Practice and Technology, 12(4), 797–805.

DOI: 10.2166/wpt.2017.083

Google Scholar

[21] Moore, S. E., Ma, L., Potzler, M., Bish, J., Karanikola, V., Prevatt, J., Arnold, R. G., Sáez, A. E. (2018). Sustainable struvite control using carbon dioxide. Journal of Environmental Engineering, 144(12), 04018123.

DOI: 10.1061/(asce)ee.1943-7870.0001466

Google Scholar

[22] Pesonen, J., Janssens, F., Hu, T., Lassi, U., & Tuomikoski, S. (2022). Precipitation of struvite using MgSO4 solution prepared from sidestream dolomite or fly ash. Heliyon, 8(12), e12580.

DOI: 10.1016/j.heliyon.2022.e12580

Google Scholar

[23] Critical Raw Materials - CRM Alliance [WWW Document] (2022). Accessed from: http://criticalrawmaterials.org/critical-raw-materials/

Google Scholar

[24] Aguilar-Pozo, V. B., Chimenos, J. M., Elduayen-Echave, B., Olaciregui-Arizmendi, K., Lopez, A., Gomez, J., Guembe, M., Garcia, I., Ayesa, E., & Astals, S. (2023). Struvite precipitation in wastewater treatment plants anaerobic digestion supernatants using a magnesium oxide by-product. Science of the Total Environment, 890, 164084.

DOI: 10.1016/j.scitotenv.2023.164084

Google Scholar

[25] Devatha, C. P. & Rashmi, H. R. (2023). Recovery of phosphorus as struvite from the dewatered liquor through crystallization using seawater as magnesium source. Resource Recovery in Municipal Waste Waters, 261-289.

DOI: 10.1016/b978-0-323-99348-7.00015-1

Google Scholar

[26] Rodrigues, D. M., Carvalho, A. P., Fragoso, R. A., Hein, T., & Brito, A. G. (2022). Bittern-impregnated sisal: An alternative magnesium source for phosphorus recovery through struvite precipitation. Journal of Water Process Engineering, 50, 103227.

DOI: 10.1016/j.jwpe.2022.103227

Google Scholar

[27] Leng, Y. & Soares, A. (2021). The mechanisms of struvite biomineralization in municipal wastewater. Science of the Total Environment, 799, 149261.

DOI: 10.1016/j.scitotenv.2021.149261

Google Scholar

[28] Zhang, P., Ding, Y.-M., Zhao, T.-L., Wang, Y.-H., Yao, Q.-Z., Fu, S.-Q., & Zhou, G.-T. (2023). Can phosphobacteria simultaneously achieve phosphorus recovery and Pb2+ removal from wasterwater by biomineralization? Chemical Engineering Journal, 455, 140734.

DOI: 10.1016/j.cej.2022.140734

Google Scholar

[29] Pepper, I. L., Gentry, T. J. (2015). Environmental Microbiology, Third Edition. Elsevier Inc.

Google Scholar

[30] Zhao, T.-L., Li, H., Huang, Y.-R., Yao, Q.-Z., Huang, Y., & Zhou, G.-T. (2019). Microbial mineralization of struvite: Salinity effect and its implication for phosphorus removal and recovery. Chemical Engineering Journal, 358, 1324-1331.

DOI: 10.1016/j.cej.2018.10.139

Google Scholar

[31] Wu, H. & Vaneeckhaute, C. (2022). Nutrient recovery from wastewater: A review on the integrated physicochemical technologies of ammonia stripping, adsorption and struvite precipitation. Chemical Engineering Journal, 433(3), 133664.

DOI: 10.1016/j.cej.2021.133664

Google Scholar

[32] Ha, T.-H., Mahasti, N. N. N., Lin, C. -S., Lu, M. -C., & Huang, Y. -H. (2023). Enhanced struvite (MgNH4PO4.6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855.

DOI: 10.1016/j.jwpe.2023.103855

Google Scholar

[33] Muhmood, A., Lu, J., Kadam, R., Dong, R., Guo, J., & Wu, S. (2019). Biochar seeding promotes struvite formation, but accelerated heavy metal accumulation. Science of The Total Environment, 652, 623-632.

DOI: 10.1016/j.scitotenv.2018.10.302

Google Scholar

[34] Sauter, A., Roosen-Runge, F., Zhang, F., Lotze, G., Feoktystov, A., Jacobs, R. M. J., & Schreiber, F. (2015). On the question of two-step nucleation in protein crystallization. Faraday Discussions, 179, 41–58.

DOI: 10.1039/c4fd00225c

Google Scholar

[35] Bagastyo, A. Y., Anggrainy, A. D., Khoiruddin, K., Ursada, R., Warmadewanthi, I., Wenten, I. G. (2022). Electrochemically-driven struvite recovery: Prospect and challenges for the application of magnesium sacrificial anode. Separation and Purification Technology, 288, 120653.

DOI: 10.1016/j.seppur.2022.120653

Google Scholar

[36] Wu, I., Hostert, J. D., Verma, G., Kuo, M. -C., Renner, J. N., & Herring, A. M. (2022). Electrochemical struvite precipitation enhanced by an amelogenin peptide for nutrient recovery. ACS Sustainable Chemistry & Engineering, 10(43), 14322-14329.

DOI: 10.1021/acssuschemeng.2c04691

Google Scholar

[37] Li, X., Zhou, X., Yang, B., & Wen, Z. (2020). Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite. Chemosphere, 262, 128357.

DOI: 10.1016/j.chemosphere.2020.128357

Google Scholar

[38] Ebba, M., Asaithambi, P., & Alemayehu, E. (2022). Development of electrocoagulation process for wastewater treatment: Optimization by response surface methodology. Heliyon,, 8(5), e09383.

DOI: 10.1016/j.heliyon.2022.e09383

Google Scholar

[39] Bisara, D., Iqbal, R., & Hidayat, S. (2020). Treatment of surface water contaminated arsenite using continuous flow air-cathode electrocoagulation. E3S Web of Conferences, 148, 02008.

DOI: 10.1051/e3sconf/202014802008

Google Scholar

[40] Effendi, A. J., Baashen, M. S., & Hidayat, S. (2022). Nutrient recovery from wastewater through struvite precipitation using air cathode electrocoagulation technology. Air, Soil and Water Research, 15(1).

DOI: 10.1177/11786221221087989

Google Scholar

[41] Hug, A., & Udert, K. M. (2013). Struvite precipitation from urine with electrochemical magnesium dosage. Water Research, 47(1), 289–299.

DOI: 10.1016/j.watres.2012.09.036

Google Scholar

[42] Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., Song, Q., & Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrason. Sonochem., 36, 123-128.

DOI: 10.1016/j.ultsonch.2016.11.019

Google Scholar

[43] Guan, Q., Zeng, G., Song, J., Liu, C., Wang, Z., & Wu, S. (2021). Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. Journal of Environmental Management, 293, 112961.

DOI: 10.1016/j.jenvman.2021.112961

Google Scholar

[44] Li, X., Zhao, X., Zhang, J., Hao, J., & Zhang, Q. (2022). Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water. Water Research, 221, 118678.

DOI: 10.1016/j.watres.2022.118678

Google Scholar

[45] Leng, Y. & Soares, A. (2023). Microbial phosphorus removal and recovery by struvite biomineralisation in comparison to chemical struvite precipitation in municipal wastewater. Journal of Environmental Chemical Engineering, 11(2), 109208.

DOI: 10.1016/j.jece.2022.109208

Google Scholar

[46] Kumari, S., & Jagadevan, S. (2022). Phosphorus recovery from municipal wastewater through struvite biomineralization using model gram-negative and gram-positive bacterial strains. Journal of Cleaner Production, 366, 132992.

DOI: 10.1016/j.jclepro.2022.132992

Google Scholar

[47] Krishnamoorthy, N., Nzadiegwu, C., Mao, X., Zeng, H., Paramasivan, B., & Chang, S. X. (2023). Biochar seeding properties affect struvite crystallization for soil application. Soil & Environmental Health, 1(2), 100015.

DOI: 10.1016/j.seh.2023.100015

Google Scholar

[48] Numviyimana, C., Warchol, J., Ligas, B., & Chojnacka, K. (2021). Nutrients recovery from dairy wastewater by struvite precipitation combined with ammonium sorption on clinoptilolite. Materials, 14(19), 5822.

DOI: 10.3390/ma14195822

Google Scholar

[49] Tai, Y., Wang, L., Hu, Z., Dang, Y., Guo, Y., Ji, X., Hu, W., & Li, M. (2022). Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors. Science of the Total Environment, 843, 156914.

DOI: 10.1016/j.scitotenv.2022.156914

Google Scholar

[50] Li, X., Zhao, X., Zhou, X., & Yang, B. (2021). Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite. Journal of Cleaner Production, 292, 126039.

DOI: 10.1016/j.jclepro.2021.126039

Google Scholar

[51] Numviyimana, C., Warchol, J., Khalaf, N., Leahy, J. J., & Chojnacka, K. (2022). Phosphorus recovery as struvite from hydrothermal carbonization liquor of chemically produced dairy sludge by extraction and precipitation. Journal of Environmental Chemical Engineering, 10(1), 106947.

DOI: 10.1016/j.jece.2021.106947

Google Scholar

[52] Le, G. V., Luu, T. A., Bui, N. T., Mofijur, M., Van, H.T., Lin, C., Tran, H.T., Bahari, M.B., Vu, C.T., & Huang, Y. H. (2022). Fluidized-bed homogenous granulation for potassium and phosphorus recovery: K-struvite release kinetics and economic analysis. Journal of the Taiwan Institute of Chemical Engineers, 139, 104494.

DOI: 10.1016/j.jtice.2022.104494

Google Scholar

[53] Ramaswamy, J., Solaiappan, V., Albasher, G., Alamri, O., Alsultan, N., & Sathiasivan, K. (2022). Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. Environmental Research, 211, 113011.

DOI: 10.1016/j.envres.2022.113011

Google Scholar

[54] Trotta, S., Adani, F., Fedele, M., & Salvatori. (2023). Nitrogen and phosphorus recovery from cow digestate by struvite precipitation: Process optimization to maximize phosphorus recovery. Results in Engineering, 20, 101478.

DOI: 10.1016/j.rineng.2023.101478

Google Scholar