Insights into the Microbiota of a Textile Wastewater Treatment System towards Sustainable Bioremediation of Industrial Wastes

Article Preview

Abstract:

Investigating the intricate microbial communities within a textile wastewater treatment system is crucial for understanding their potential role in the process, and possibly for process optimization in the future. Dye-containing wastewater sludge samples were collected from a textile industry treatment plant. Employing total genomic DNA extraction, amplicon sequencing, and sequence data analysis, this research investigated the microbial community composition in three treatment tanks. Rarefaction curves confirm adequate sequencing depth, with the aeration tank displaying the highest reads. Alpha diversity reveals richer microbial communities in the anoxic tank, while all samples demonstrate similar diversity and species richness. Proteobacteria dominate at the phylum level, predominantly in the aerobic tank, signifying their involvement in nitrogen removal. Conversely, anoxic sludge features Planctomycetota and Thermotogota, potentially participating in anaerobic processes. Genus-level analysis highlights the potential significance of SM1A02 in nitrogen metabolism under anoxic conditions, while Denitratisoma dominates in aerobic tank, indicating denitrification as the main process in this tank. This study offers valuable insights into the microbial community members present in the textile wastewater treatment system, and their potential roles, towards a more sustainable biodegradation strategies of dye-containing wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-131

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jamee and R. Siddique, Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach, Eur. J. Microbiol. Immunol. 9 (2019) 4.

DOI: 10.1556/1886.2019.00018

Google Scholar

[2] S. Velusamy, A. Roy, S. Sundaram, and T. Kumar Mallick, A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment, Chem. Rec. 21 (2021) 7.

DOI: 10.1002/tcr.202180701

Google Scholar

[3] H. Yin, H. Guo, P. Qiu, L. Yi, and J. Li, Case analysis on textile wastewater subjected to combined physicochemical–biological treatment and ozonation, Desalin. Water Treat. 66 (2017) 140.

DOI: 10.5004/dwt.2017.1619

Google Scholar

[4] X. C. Jin, G. Q. Liu, Z. H. Xu, and W. Y. Tao, Decolorization of a dye industry effluent by Aspergillus fumigatus XC6, Appl. Microbiol. Biot. 74 (2007) 1.

DOI: 10.1007/s00253-006-0658-1

Google Scholar

[5] V. S. Munagapati and D. S. Kim, Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder, J. Mol. Liq. 220 (2016) 540.

DOI: 10.1016/j.molliq.2016.04.119

Google Scholar

[6] R. Jamee and R. Siddique, Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach, Eur. J. Microbiol. Immunol. 9 (2019) 4.

DOI: 10.1556/1886.2019.00018

Google Scholar

[7] F. Q. Wang, Z. J. Chen, J. M Yang, W. J. Wang, Y. W. Feng, Z. Li and G. Sun, Labilibacter sediminis sp. nov., isolated from marine sediment, Int. J. Syst. Evol. Micr. 70 (2020) 1.

DOI: 10.1099/ijsem.0.003758

Google Scholar

[8] K. Tait, D. A. White, S. A. Kimmance, G. Tarran, P. Rooks, M. Jones and C. A. Llewellyn, Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media, Algal. Res. 44 (2019) 1-5.

DOI: 10.1016/j.algal.2019.101666

Google Scholar

[9] R. Jamee and R. Siddique, Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach, Eur. J. Microbiol. Immunol. 9 (2019) 4.

DOI: 10.1556/1886.2019.00018

Google Scholar

[10] A. E. Santhanarajan, W. J. Sul, K. J. Yoo, H. J. Seong, H. G. Kim, and S. C. Koh, Metagenomic insight of a full scale eco-friendly treatment system of textile dye wastewater using bioaugmentation of the composite culture CES-1, Microorganisms 9 (2021) 7.

DOI: 10.3390/microorganisms9071503

Google Scholar

[11] W. G. Levine, Metabolism of azo dyes: Implication for detoxication and activation, Drug. Metab. Rev. 23 (1991) 3-4.

DOI: 10.3109/03602539109029761

Google Scholar

[12] D. Shruthi Keerthi and M. Mukunda Vani, Optimization studies on decolorization of textile wastewater using natural coagulants, Mater. Today-Proc. 57 (2022) 1546.

DOI: 10.1016/j.matpr.2021.12.160

Google Scholar

[13] Y. Chen, L. Zhang, L. Feng, G. Chen, Y.Wang, Z. Zhai and Q. Zhang, Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology, Environ. Sci. Pollut. R. 26 (2019) 24.

DOI: 10.1007/s11356-019-05781-z

Google Scholar

[14] M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, Embnet J. 17 (2011) 1.

DOI: 10.14806/ej.17.1.200

Google Scholar

[15] B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes, "DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods 13 (2016) 7.

DOI: 10.1038/nmeth.3869

Google Scholar

[16] R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32 (2004) 5.

DOI: 10.1093/nar/gkh340

Google Scholar

[17] M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2 - Approximately maximum-likelihood trees for large alignments, Plos One 5 (2010) 3.

DOI: 10.1371/journal.pone.0009490

Google Scholar

[18] Q. Yang, P. Xiong, P. Ding, L. Chu, and J. Wang, Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity, Bioresource Technol. 196 (2015) 169–175.

DOI: 10.1016/j.biortech.2015.07.087

Google Scholar

[19] S. Lindemann, J. Tremblay, J. H. Vineis, L. W. Hugerth, and A. F. Andersson, Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing, Front Microbiol. 8 (2017) 1.

DOI: 10.3389/fmicb.2017.01561

Google Scholar

[20] J. Lu, Y. Zhang, J. Wu, and J. Wang, Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system, Bioresource Technol. 305 (2020) 2.

DOI: 10.1016/j.biortech.2020.123037

Google Scholar

[21] H. Dong, H. Liu, X. Yang, H. Gong, H. Zhang, R. Wang, L. Yan and W. Mai, The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater, Processes 9 (2021) 1329.

DOI: 10.3390/pr9081329

Google Scholar

[22] L. Shi, N. Liu, G. Liu, and J. Fang, Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System, Microorganisms 9 (2021) 10.

DOI: 10.3390/microorganisms9102134

Google Scholar

[23] S. Tizazu, G. Tesfaye, B. Andualem, A. Wang, and A. Guadie, Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis, J. Environ. Manage. 323 (2022) 116235.

DOI: 10.1016/j.jenvman.2022.116235

Google Scholar

[24] Y. M. Kolekar, H. N. Nemade, V. L. Markad, S. S. Adav, M. S. Patole, and K. M. Kodam, Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules, Bioresource Technol. 104 (2012) 818–822.

DOI: 10.1016/j.biortech.2011.11.046

Google Scholar

[25] W. Zhu, J. Chen, H. Zhang, S. Yuan, W. Guo, Q. Zhang and S. Zhang, Start-up phase optimization of pyrite-intensified hybrid sequencing batch biofilm reactor (PIHSBBR): Mixotrophic denitrification performance and mechanism, J. Environ. Manage. 330 (2023) 117232.

DOI: 10.1016/j.jenvman.2023.117232

Google Scholar

[26] F. Ndayisenga, Z. Yu, B. Wang, G. Wu, H. Zhang, I. A. Phulpoto, J. Zhao and J.Yang, Thermophilic-operating environment promotes hydrogen-producing microbial growth in a lignocellulose-fed DF-MEC system for enhanced biohydrogen evolution, Process Saf. Environ.167 (2022) 213–224.

DOI: 10.1016/j.psep.2022.09.026

Google Scholar

[27] Z. H. Wang, M. Xue, K. Huang, and Z. Liu, Textile dyeing wastewater treatment, Peter J. Hauser, (Ed), Advances in Treating Textile Effluent, Intech, Rijeka, 2011, p.91–116.

DOI: 10.5772/22670

Google Scholar

[28] Y. Li, L. Liu, Q. Wang, J. Wu, T. Liu, H. Liu, Y. Hong and T. Huang, Enhanced anaerobic co-metabolism of coal gasification wastewater via the assistance of zero-valent iron, J. Water Process Eng. 40 (2021) 5-6.

DOI: 10.1016/j.jwpe.2020.101817

Google Scholar

[29] J. Feng, J. Zhang, B. Tan, M. Li, H. Peng, J. He, Y. Zhang and J. Su, Microbial community and metabolic characteristics evaluation in start-up stage of electro-enhanced SBR for aniline wastewater treatment, J. Water Process Eng. 45 (2022) 5-7.

DOI: 10.1016/j.jwpe.2021.102489

Google Scholar

[30] J. Brzeszcz, P. Kapusta, T. Steliga, and A. Turkiewicz, Hydrocarbon removal by two differently developed microbial inoculants and comparing their actions with biostimulation treatment, Molecules 25 (2020) 10.

DOI: 10.3390/molecules25030661

Google Scholar

[31] M. Xu, P. Gao, H. Chen, X.Huang, Z. Xue, X. Shen, C. Li and J. Cao, Spatiotemporal distribution of microorganisms in a full-scale anaerobic baffled reactor–anoxic/oxic treatment plant for printing and dyeing wastewater, J Water Process Eng. 49 (2022) 4-6.

DOI: 10.1016/j.jwpe.2022.103090

Google Scholar