[1]
S. Jafari, B. Mahyad, H. Hashemzadeh, et al., "Biomedical applications of TiO2 nanostructures: Recent advances," Int. J. Nanomedicine 15 (2020) 3447–3470.
DOI: 10.2147/ijn.s249441
Google Scholar
[2]
D. Losic, "Advancing of titanium medical implants by surface engineering: recent progress and challenges," Expert Opin. Drug. Deliv. 18 (2021) 1355-1378.
DOI: 10.1080/17425247.2021.1928071
Google Scholar
[3]
V. Kumaravel, K.M. Nair, S. Mathew, et al., "Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants," Chemical Engineering Journal 416 (2021) 129071.
DOI: 10.1016/j.cej.2021.129071
Google Scholar
[4]
M. Geetha, A.K. Singh, R. Asokamani, et al., "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review," Prog. Mater .Sci. 54 (2009) 397-424.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[5]
Y. Li, C. Yang, H. Zhao, et al., "New developments of Ti-based alloys for biomedical applications," Materials 7 (2014) 1709-1800.
Google Scholar
[6]
D. Rana, T. Matsuura, "Surface modifications for antifouling membranes," Chem. Rev. 110 (2010) 2448-2471.
DOI: 10.1021/cr800208y
Google Scholar
[7]
S. Durdu, G. Cihan, E. Yalcin, et al. "Characterization and mechanical properties of TiO2 nanotubes formed on titanium by anodic oxidation," Ceram. Int. 47 (2021)10972-10979.
DOI: 10.1016/j.ceramint.2020.12.218
Google Scholar
[8]
M. Saini, "Implant biomaterials: A comprehensive review," World J. Clin. Cases 3 (2015) 52-57.
Google Scholar
[9]
Y.C Nah, I. Paramasivam, P. Schmuki, "Doped TiO2 and TiO2 nanotubes: Synthesis and applications," Chem.Phys.Chem. 11 (2010) 2698-2713.
DOI: 10.1002/cphc.201000276
Google Scholar
[10]
X. Liu, P.K. Chu, C. Ding, "Surface modification of titanium, titanium alloys, and related materials for biomedical applications," Materials Science and Engineering R: Reports 47 (2004) 49-121.
DOI: 10.1016/j.mser.2004.11.001
Google Scholar
[11]
V. Jokanović, M. Vilotijević, B. Jokanović, et al, "Investigations of corrosion on the surface of titanium substrate caused by combined alkaline and heat treatment," Corros. Sci. 82 (2014) 180-190.
DOI: 10.1016/j.corsci.2014.01.014
Google Scholar
[12]
S. Kathirvel, C. Su, C.Y. Yang, et al.,"The growth of TiO2 nanotubes from sputter-deposited Ti film on transparent conducting glass for photovoltaic applications," Vacuum 118 (2015) 17-25.
DOI: 10.1016/j.vacuum.2014.12.024
Google Scholar
[13]
V.H. Pham, T.S. Jang, H.D. Jung, et al., "Creation of nanoporous tantalum (Ta)-incorporated titanium (Ti) surface onto Ti implants by sputtering of Ta in Ar under extremely high negative substrate biases," J .Mater. Chem. 22 (2012) 24798-24804.
DOI: 10.1039/c2jm35536a
Google Scholar
[14]
Y. Yokoi, "Osteoblast-like cell proliferation, alp activity and photocatalytic activity on sintered anatase and rutile titanium dioxide," Materials 14 (2021) 4414 .
DOI: 10.3390/ma14164414
Google Scholar
[15]
S. Türk, I.Altınsoy, G. Çelebi Efe, et al., "A comparison of pretreatments on hydroxyapatite formation on Ti by biomimetic method,"Journal of the Australian Ceramic Society. 54 (2018) 533-543.
DOI: 10.1007/s41779-018-0182-7
Google Scholar