Debonding Study of the Viscoelastic Laminate in Planning Hull Vessels Subjected to Slamming

Article Preview

Abstract:

This project is based on the investigation of one characteristic of a new material to improve GFRP high speed vessels constructions. The main objective is to find the debonding, that is the analyzed characteristic that is going to prove that the material works to avoid delamination in the bottom. This characteristic is studied by laboratory reproductions, by designing fiber glass specimens and modifying some of them with viscoelastic, to compare the modified and non-modified ones. The laboratory experiment is based on performing an axial force in the specimen until it separates. By analyzing the force and displacement obtained from the tensile tests, the crack growth rate and stress ratio for each specimen were evaluated. The failure ratio, which allows the evaluation of shear, was also performed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. H. Benameur, Dynamic Response Of Hull Due, ProQuest LLC, 1995, pp.31-32.

Google Scholar

[2] D.P. Townsend, Comportamiento A Impacto De Materiales Compuestos Sometidos A Fenómenos De Slamming En Embarcaciones De Alta Velocidad., Madrid: Universidad Poilectnica de Madrid, 2018.

DOI: 10.20868/upm.thesis.52439

Google Scholar

[3] R.P. Fernández, «Construcción Naval: innovación y sostenibilidad,» MAPFRE Global Risks, p.1, 14 Septiembre 2021.

Google Scholar

[4] P. Townsend, J. C. Suárez-Bermejo, P. Pinilla y N. Muñoz, «Insertion of viscoelastic layer to absorb the propagation of energy due to vertical slamming impacts in fiberglass reinforced plastic vessel,» Ingeniare. Rev. chil. ing., vol. 30, nº 2, pp.289-305, 2022.

DOI: 10.4067/s0718-33052022000200289

Google Scholar

[5] ABS, Slamming Loads And Strength Assessment For., New York: American Bureau of Shipping, 2021, pp.8-9.

Google Scholar

[6] J.C. S. B. Patricio Townsend y &. Rodríguez-Ortíz, « Analysis of Hybrid Viscoelastic Sheets Adhered to the Hull of a GFRP Vessel to Reduce Impact Damage,» Agarwal, R.K. (eds) Recent Advances in Manufacturing Engineering and Processes, pp.159-166, 01 Febrero 2023.

DOI: 10.1007/978-981-19-6841-9_16

Google Scholar

[7] X. Martinez, S. Oller y E. Barbero, «Caracterización de la delaminación en materiales compuestos mediante la teoría de mezclas serie/paralelo,» Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 27, nº 3, pp.189-199, 2011.

DOI: 10.1016/j.rimni.2011.07.001

Google Scholar

[8] B.W. Kim y J. Nairn, «Observations of Fiber Fracture and Interfacial Debonding Phenomena Using the Fragmentation Test in Single Fiber Composites,» Journal of Composite Materials, vol. 36, pp.1825-1858, 2022.

DOI: 10.1177/0021998302036015243

Google Scholar

[9] S.I. Dr. S. Selvaraju, «Aplications of composites in marine industry,» Journal of Engineering Research and Studies, vol. II, pp.89-91, 2011.

Google Scholar

[10] 2. A. Besednjak, Materiales compuestos Procesos de fabricación de embarcaciones, Barcelona: Edicions UPC, 2005.

DOI: 10.5821/ebook-9788498802108

Google Scholar

[11] C.P. Alonso, Naval Composites: Los materiales compuestos y la industria naval, Barcelona: Universidad Politecnica de Calalunya, 2016.

Google Scholar

[12] ASTM INTERNATIONAL, «Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials».

Google Scholar

[13] W.F. Smith, Fundamentos de la ciencia e ingeniería de materiales, 4th Edition, Mexico: McGRAW-HILL INTERAMERICANA EDITORES, S. A. DE C.V., 2006.

Google Scholar