Effect of Zinc Oxide Nanofiller on the Ionic Conductivity of Carboxymethyl Cellulose-Based Solid Polymer Electrolyte

Article Preview

Abstract:

The semi-crystalline nature of bio-based solid polymer electrolytes (SPE) can impede ionic mobility, thereby reducing their ionic conductivity. One established method to enhance the ionic conductivity of SPE involves the addition of fillers. In this study, SPE was prepared using a solution casting method, comprising carboxymethyl cellulose (CMC) as the biopolymer host, lithium bis-trifluoromethanesulfonimide (LiTFSI) as the charge carrier, and zinc oxide (ZnO) as the nanofiller. We investigated the impact of ZnO on the electronic and chemical properties of the CMC-LiTFSI SPE through Electrochemical Impedance Spectroscopy (EIS), Fourier Transform Infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD). The highest ionic conductivity of 1.94 x 10-6 S/cm was achieved with 4 wt.% ZnO. FTIR spectra demonstrated complexation between CMC, LiTFSI salt, and ZnO nanofiller. XRD analysis indicated an improvement in the amorphous nature as ZnO was added to CMC-LiTFSI system, which explained the increase in ionic conductivity. In conclusion, ZnO present a promising choice as a nanofiller to enhance the ionic conductivity a of the CMC-LiTFSI SPE system. Keywords: Solid polymer electrolyte; carboxymethyl cellulose; zinc oxide nanofiller; ionic conductivity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H, Niu., L. Wang, P. Guan, N. Zhang, C. Yan, M. Ding, X. Guo, T. Huang & X. Hu. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. Journal of energy storage, 40, 102659. (2021).

DOI: 10.1016/j.est.2021.102659

Google Scholar

[2] M. Yuan, & K. Liu, Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 43, (2020) 58-70.

DOI: 10.1016/j.jechem.2019.08.008

Google Scholar

[3] H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, & X. He. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Materials, 33 (2020) 188-215.

DOI: 10.1016/j.ensm.2020.08.014

Google Scholar

[4] S. Rudhziah, M. S. A. Rani, A. Ahmad, N. S. Mohamed and H. Kaddami, H. Potential of blend of kappa carrageenan and cellulose derivatives for green polymer electrolyte application. Industrial Crops and Products, 72 (2015) 133-141.

DOI: 10.1016/j.indcrop.2014.12.051

Google Scholar

[5] R. Balart, D. Garcia-Garcia, V. Fombuena, L. Quiles-Carillo, & M. P. Arrieta Biopolymers from natural resources. Polymers, 13(15) (2021) 2532.

DOI: 10.3390/polym13152532

Google Scholar

[6] A. S. Samsudin, and M. A. Saadiah. Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH4Br. Journal of Non-Crystalline Solids (2018).

DOI: 10.1016/j.jnoncrysol.2018.05.027

Google Scholar

[7] M. N. Hafiza, and M. I. N. Isa (a). Transport studies of carboxymethyl cellulose/ chitosan-ammonium bromide biopolymer blend electrolytes as an ionic conductor. Journal of Sustainability Science and Management Special Issue Number 2: Fundamental Interdisciplinary Pathways to Future Sustainability (2017) 58-64.

Google Scholar

[8] R. C. Agrawal, and G. P. Pandey. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics, 41(22) (2008) 223001.

DOI: 10.1088/0022-3727/41/22/223001

Google Scholar

[9] M. Keller, G. B. Appetecchi, G. T. Kim, V. Sharova, M. Schneider, J. Schuhmacher, and S. Passerini. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in (PEO)15LiTFSI. Journal of Power Sources, 353 (2017) 287-297.

DOI: 10.1016/j.jpowsour.2017.04.014

Google Scholar

[10] Q. Pan, D. M. Smith, H. Qi, S. Wang, and C.Y. Li. Hybrid electrolytes with controlled network structures for lithium metal batteries. Advanced Materials, 27(39) (2015) 5995-6001.

DOI: 10.1002/adma.201502059

Google Scholar

[11] M. A. Ramlli, and M. I. N. Isa. Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on Carboxymethyl cellulose doped with ammonium fluoride. The Journal of Physical Chemistry B, 120(44) (2016)11567-11573.

DOI: 10.1021/acs.jpcb.6b06068

Google Scholar

[12] X. Meng, G. C. Yoo, M. Li, and A. J. Ragauskas. Physicochemical structural changes of cellulosic substrates during enzymatic saccharification. Journal of Applied Biotechnology & Bioengineering, 1(3) (2016).

DOI: 10.15406/jabb.2016.01.00015

Google Scholar

[13] Rarmesh, K.H. Leen, K. Kumutha, A.K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochim. Acta A 66 (2007) 1237–1242.

DOI: 10.1016/j.saa.2006.06.012

Google Scholar

[14] C. Naceur Abouloula, M. Rizwan, V. Selvanathan, C. I. Abdullah, A. Hassan, R. Yahya, and A. Oueriagli. A novel application for oil palm empty fruit bunch : extraction and modification of cellulose for solid polymer electrolyte. Ionics (2018) 1–10.

DOI: 10.1007/s11581-018-2558-7

Google Scholar

[15] S.N.F. Yusuf, A.D. Azzahari, R. Yahya, S.R. Majid, M.A;. Careem, and A.K. Arof. From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. RSC Adv 6 (2016) 27714–27724.

DOI: 10.1039/c6ra04188d

Google Scholar

[16] S.T. Hameed, T. F. Qahtan, A. M. Abdelghany, & A. H. Oraby. Effect of zinc oxide nanoparticles on physical properties of carboxymethyl cellulose/poly (ethylene oxide) matrix. Physica B: Condensed Matter, 633 (2022) 413771.

DOI: 10.1016/j.physb.2022.413771

Google Scholar

[17] M. S. Su'ait, A. Ahmad, K. H. Badri, N. S. Mohamed, M. Y. A. Rahman, C. L. A. Ricardo, and P. Scardi, The potential of polyurethane bio- based solid polymer electrolyte for photoelectrochemical cell application. international journal of hydrogen energy, 39(6) (2014) 3005-3017.

DOI: 10.1016/j.ijhydene.2013.08.117

Google Scholar

[18] A. S. Samsudin, and M. I. N. Isa. Study of the conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes. Journal of the Korean Physical Society. 65 (9) (2014) 1441 – 1447.

DOI: 10.3938/jkps.65.1441

Google Scholar

[19] S. U. Patil, S. S. Yawale, and S. P. Yawale. Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler. Bulletin of Materials Science, 37(6) (2014) 1403-1409.

DOI: 10.1007/s12034-014-0089-z

Google Scholar