Effect of Electrode Thickness on Capacitive and Self-Discharge Performance of Carbon-Based Supercapacitor

Article Preview

Abstract:

Supercapacitor is an energy storage device that has electrodes, electrolyte, separator and current collector components. In this study, activated carbon electrode material with turbostratic structure having the interlayer spacing (d002) of 3.550 Å, and with porosity having the specific surface area (SBET) of 685 m2 g-1 was used to prepare electrodes with the thickness of 0.1, 0.3 and 0.5 mm for symmetrical supercapacitor cells, respectively. Electrochemical tests show that the reduction in the electrodes thickness from the thickest electrodes to 0.1 mm causes the specifics capacitance, energy and power of the cells to increase by factors of 6, 5, and 3.5 times, respectively, to reach the values of 37 F kg-1, 5 W h kg-1, 114 W kg-1. This test also shows that the length of time domain in which the activation-controlled mechanisms that dominantly drives the voltage decay during self-discharge and the corresponding voltage decay rate, which are longer and higher for the cell (0.1 mm), respectively. Furthermore, the self-discharge data show the present of the time region of dominant diffusion-controlled mechanism for the cell (0.5 mm) but show the absence of such region for the other cells.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M. Usha Rani, K. Nanaji, T.N. Rao, A.S. Deshpande, Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors, J. Power Sources. 471 (2020) 228387.

DOI: 10.1016/j.jpowsour.2020.228387

Google Scholar

[2] L. Liu, N. Solin, O. Inganäs, Self-discharge study of lignin/graphite hybrid material electrodes, Electrochim. Acta. 371 (2021) 137836 https://doi.org/10.1016/j.electacta. 2021.137836.

DOI: 10.1016/j.electacta.2021.137836

Google Scholar

[3] R. Farma, M. Deraman, S. Soltaninejad, E. Taer, M.M. Ishak, N.S.M. Nor, N.H. Basri, B.N.M. Dolah, N.K. Othman, M.A.R. Othman, R. Daik, M. Suleman, G. Hegde, A New Approach towards Improving the Specific Energy and Specific Power of a Carbon-Based Supercapacitor using Platinum-Nanoparticles on Etched Stainless Steel Current Collector, Electrochemistry. 83 (2015) 1053–1060.

DOI: 10.5796/electrochemistry.83.1053

Google Scholar

[4] B.E. Conway, W.G. Pell, T.-C. Liu, Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries, J. Power Sources. 65 (1997) 53–59.

DOI: 10.1016/S0378-7753(97)02468-3

Google Scholar

[5] M. Kaus, J. Kowal, D.U. Sauer, Modelling the effects of charge redistribution during self-discharge of supercapacitors, Electrochim. Acta. 55 (2010) 7516–7523.

DOI: 10.1016/j.electacta.2010.01.002

Google Scholar

[6] Y. Diab, P. Venet, H. Gualous, G. Rojat, Self-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications, IEEE Trans. Power Electron. 24 (2009) 510–517.

DOI: 10.1109/TPEL.2008.2007116

Google Scholar

[7] W. Viola, C. Jin, T.L. Andrew, Self-discharge characteristics of vapor deposited polymer electrodes in an all-textile supercapacitor, Synth. Met. 268 (2020) 116483.

DOI: 10.1016/j.synthmet.2020.116483

Google Scholar

[8] X. Su, W. Jia, H. Ji, Y. Zhu, Mitigating self-discharge of activated carbon-based supercapacitors with hybrid liquid crystal as an electrolyte additive, J. Energy Storage. 41 (2021) 102830.

DOI: 10.1016/j.est.2021.102830

Google Scholar

[9] M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals, Nano Energy. 47 (2018) 43–50.

DOI: 10.1016/j.nanoen.2018.02.022

Google Scholar

[10] S. Devese, T. Nann, Suppressed self-discharge of an aqueous supercapacitor using Earth-abundant materials, J. Electroanal. Chem. 871 (2020) 114307.

DOI: 10.1016/j.jelechem.2020.114307

Google Scholar

[11] Y. Du, Y. Mo, Y. Chen, Effects of Fe Impurities on Self-Discharge Performance of Carbon-Based Supercapacitors, Materials (Basel). 14 (2021) 1908.

DOI: 10.3390/ma14081908

Google Scholar

[12] M. Shi, Z. Zhang, M. Zhao, X. Lu, Z.L. Wang, Reducing the Self-Discharge Rate of Supercapacitors by Suppressing Electron Transfer in the Electric Double Layer, J. Electrochem. Soc. 168 (2021) 120548.

DOI: 10.1149/1945-7111/ac44b9

Google Scholar

[13] E. Taer, Apriwandi, Windasari, R. Taslim, M. Deraman, Novel laurel aromatic evergreen biomass derived hierarchical porous carbon nanosheet as sustainable electrode for high performance symmetric supercapacitor, J. Energy Storage. 67 (2023) 107567.

DOI: 10.1016/j.est.2023.107567

Google Scholar

[14] M. Suleman, M. Deraman, M.A.R. Othman, R. Omar, M.A. Hashim, N.H. Basri, N.S.M. Nor, B.N.M. Dolah, M.F.Y.M. Hanappi, E. Hamdan, N.E.S. Sazali, N.S.M. Tajuddin, M.R.M. Jasni, Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes, J. Phys. Conf. Ser. 739 (2016) 012086.

DOI: 10.1088/1742-6596/739/1/012086

Google Scholar

[15] R. Farma, I. Apriyani, Awitdrus, M. Deraman, E. Taer, R.N. Setiadi, A.S. Rini, Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans-based carbon nanofiber for high performance supercapacitors, J. Energy Storage. 67 (2023) 107611.

DOI: 10.1016/j.est.2023.107611

Google Scholar

[16] A.. Coutinho, J.. Rocha, C.. Luengo, Preparing and characterizing biocarbon electrodes, Fuel Process. Technol. 67 (2000) 93–102.

DOI: 10.1016/S0378-3820(00)00091-6

Google Scholar

[17] M. Deraman, I.A. Talib, M.R. Omar, H.H.J. Jumali, E. Taer, M.M. Saman, Awitdrus, E. Taer, M. Deraman, I.A. Talib, R. Omar, M.H. Jumali, M.M. Saman, Microcrystallite dimension and total active surface area of carbon electrode from mixtures of Pre-Carbonized oil palm empty fruit bunches and green petroleum cokes, Sains Malaysiana. 39 (2010) 83–86. http://inis.iaea.org/Search/search.aspx?orig_q=RN:45088682 (accessed July 9, 2015).

DOI: 10.1063/1.4757187

Google Scholar

[18] N. Mustapar, M.A.R. Othman, M.S. Su'ait, M. Suleman, W.Y. Wong, K.S. Loh, Supercapacitor performance gains from structural modification of carbon electrodes using gamma radiations, J. Electrochem. Sci. Eng. (2022).

DOI: 10.5599/jese.1224

Google Scholar

[19] R. Farma, M. Deraman, Awitdrus, I. a. Talib, R. Omar, J.G. Manjunatha, M.M. Ishak, N.H. Basri, B.N.M. Dolah, Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon, Int. J. Electrochem. Sci. 8 (2013) 257–273.

DOI: 10.1063/1.4917096

Google Scholar

[20] M. Khalfaoui, S. Knani, M.A. Hachicha, A.B. Lamine, New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci. 263 (2003) 350–356.

DOI: 10.1016/S0021-9797(03)00139-5

Google Scholar

[21] F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance, J. Power Sources. 159 (2006) 1532–1542.

DOI: 10.1016/j.jpowsour.2005.12.023

Google Scholar

[22] E. Taer, M. Deraman, I.A. Talib, S.A. Hashmi, A.A. Umar, Growth of platinum nanoparticles on stainless steel 316L current collectors to improve carbon-based supercapacitor performance, Electrochim. Acta. 56 (2011) 10217–10222.

DOI: 10.1016/j.electacta.2011.09.007

Google Scholar

[23] Y.-J. Kim, B.-J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon N. Y. 44 (2006) 1592–1595.

DOI: 10.1016/j.carbon.2006.02.011

Google Scholar

[24] R.S. Salama, M.S. Gouda, M.F.A. Aboud, F.T. Alshorifi, A.A. El-Hallag, A.K. Badawi, Synthesis and characterization of magnesium ferrite-activated carbon composites derived from orange peels for enhanced supercapacitor performance, Sci. Rep. 14 (2024) 8223.

DOI: 10.1038/s41598-024-54942-9

Google Scholar

[25] S. Li, X. Tan, H. Li, Y. Gao, Q. Wang, G. Li, M. Guo, Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor, Sci. Rep. 12 (2022) 10106.

DOI: 10.1038/s41598-022-14214-w

Google Scholar

[26] L.-Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.-L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nat. Commun. 4 (2013) 2923.

DOI: 10.1038/ncomms3923

Google Scholar

[27] H. Yu, J. Wu, L. Fan, K. Xu, X. Zhong, Y. Lin, J. Lin, Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte, Electrochim. Acta. 56 (2011) 6881–6886.

DOI: 10.1016/j.electacta.2011.06.039

Google Scholar

[28] K.-M. Kim, J.-W. Hur, S.-I. Jung, A.-S. Kang, Electrochemical characteristics of activated carbon/Ppy electrode combined with P(VdF-co-HFP)/PVP for EDLC, Electrochim. Acta. 50 (2004) 863–872.

DOI: 10.1016/j.electacta.2004.02.059

Google Scholar

[29] N.S.M. Nor, M. Deraman, M. Suleman, M.R.M. Jasni, J.G. Manjunatha, M.A.R. Othman, S.A. Shamsudin, Supercapacitors using binderless activated carbon monoliths electrodes consisting of a graphite additive and pre-carbonized biomass fibers, Int. J. Electrochem. Sci. 12 (2017).

DOI: 10.20964/2017.03.48

Google Scholar

[30] A.I. Inamdar, Y. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors, J. Power Sources. 196 (2011) 2393–2397.

DOI: 10.1016/j.jpowsour.2010.09.052

Google Scholar