[1]
V.G. Harris. Modern microwave ferrites, IEEE Transactions on Magnetics. 48 (2012) 1075-1104.
Google Scholar
[2]
Q. Li, Y. Chen, C. Yu, L, Young, J. Spector, V.G. Harris, Emerging magnetodielectric materials for 5G communications: 18H hexaferrites, Acta Materialia. 231 (2022) 117854.
DOI: 10.1016/j.actamat.2022.117854
Google Scholar
[3]
A. Cochardt. Modified strontium ferrite, a new permanent magnet material, Journal of Applied Physics.34 (1963) 1273-1274.
DOI: 10.1063/1.1729468
Google Scholar
[4]
R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57(2012) 1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[5]
C. Wu, W. Wang, Q. Li, et al. Barium hexaferrites with narrow ferrimagnetic resonance linewidth tailored by site-controlled Cu doping, Journal of the American Ceramic Society. 105(2022) 7492-7501.
DOI: 10.1111/jace.18702
Google Scholar
[6]
L. Zhong, C. Wu, Z. Yu, et al. Enhanced magnetic properties of strontium ferrites through constructing magnetoelastic stress, Journal of the European Ceramic Society. 42(2022) 2853-2859.
DOI: 10.1016/j.jeurceramsoc.2022.01.046
Google Scholar
[7]
R. Jasrotia, V. P. Singh, B. Sharma, et al. Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications, Journal of Alloys and Compounds. 830(2020) 1-6.
DOI: 10.1016/j.jallcom.2020.154687
Google Scholar
[8]
A. Singh, K. M. Ranjan, S. Kumar. Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor, Journal of Materials Science: Materials in Electronics. 32(2021) 4110-4124.
DOI: 10.1007/s10854-020-05152-2
Google Scholar
[9]
S.K. Godara, M. Singh, et al. Effect of calcium solubility on structural, microstructural and magnetic properties of M-type barium hexaferrite, Ceramics International. 47(2021) 20399-20406.
DOI: 10.1016/j.ceramint.2021.04.048
Google Scholar
[10]
X. Liu, W. Zhang, et al. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites, Journal of Magnetism and Magnetic Materials. 238(2002) 207-214.
DOI: 10.1016/s0304-8853(01)00914-3
Google Scholar
[11]
M. Ramzan, M. I. Arshard, et al. Investigation of electrical and magnetic properties of La3+ substituted M-Type Ba-Ni nano-ferrites, Journal of Superconductivity and Novel Magnetism. 32(2019) 3517-3524.
DOI: 10.1007/s10948-019-5115-3
Google Scholar
[12]
T. Qiu, J. Li, et al. Low-temperature cofired Co/Zr-cosubstituted M-type barium ferrite, Journal of Electronic Materials. 46(2017) 1358-1362.
DOI: 10.1007/s11664-016-5126-9
Google Scholar
[13]
A. P. Singh, O. P. Pandey. Effect of sintering additives on structural, magnetic, and dielectric properties of Ba3Co2Fe24O41 ferrite, Journal of Superconductivity and Novel Magnetism. 33(2020) 519-526.
DOI: 10.1007/s10948-019-05202-9
Google Scholar
[14]
C. Huang, A. Jiang. Magnetic property enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition, Intermetallics. 89(2017) 111-117.
DOI: 10.1016/j.intermet.2017.06.001
Google Scholar
[15]
S. Kanagesan, M. Hashim, S. Jesurani, et al. Effect of microwave sintering on microstructural and magnetic properties of strontium hexaferrite using sol-gel technique, Journal of Materials Science: Materials in Electronics. 24(2013) 3881-3884.
DOI: 10.1007/s10854-013-1333-9
Google Scholar
[16]
Y. Tokunage, Y. Kaneko, et al. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity, Physical Review Letters. 105(2010) 257201.
DOI: 10.1103/physrevlett.105.257201
Google Scholar
[17]
Q. Liu, C. Wu. Microstructure and magnetic properties of low-temperature sintered M-type hexaferrite BaZn0.6Sn0.6Fe10.8O19 for LTCC process, Journal of Magnetism and Magnetic Materials. 475(2019) 223-228.
DOI: 10.1016/j.jmmm.2018.11.059
Google Scholar
[18]
J. Li, H. Zhang, et al. Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites, Journal of Rare Earths. 31(2013) 983-987.
DOI: 10.1016/s1002-0721(13)60017-4
Google Scholar
[19]
J. Li, H. Zhang, et al. Ni-Ti equiatomic co-substitution of hexagonal M-type Ba(NiTi)xFe12-2xO19 ferrites, Journal of Alloys and Compounds. 649(2015) 782-787.
DOI: 10.1016/j.jallcom.2015.07.173
Google Scholar
[20]
B. Zhang, Q. Zhao, et al. Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1-xYxCeNbWO8 NTC ceramics, Journal of Alloys and Compounds. 698(2017) 1-6.
DOI: 10.1016/j.jallcom.2016.12.226
Google Scholar
[21]
D. Rao, G. S. Upadhyaya. Sintering of Mo2FeB2 layered cermet containing SiC fibers, Materials Chemistry and Physics. 70(2001) 336-339.
DOI: 10.1016/s0254-0584(00)00531-9
Google Scholar
[22]
Q. Liu, C. Wu, et al. Textured M-type barium hexaferrite Ba(ZnSn)xFe12−2xO19 with c-axis anisotropy and high squareness ratio, Ceramics International. 45(2019) 4535-4539.
DOI: 10.1016/j.ceramint.2018.11.138
Google Scholar
[23]
L. Zhong, Z. Lan, Q. Li, et al. Synergetic effect of site-controlled two-step Ca doping on magnetic and electrical properties of M-type strontium hexaferrites, Journal of the European Ceramic Society. 43(2023) 5521-5529.
DOI: 10.1016/j.jeurceramsoc.2023.05.036
Google Scholar
[24]
J. S. Lee, J. M. Cha, et al. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Scientific Reports. 12135(2015).
DOI: 10.1038/srep12135
Google Scholar
[25]
M. G. Shalini. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite, Journal of Materials Science: Materials in Electronics. 30(2019) 13647-13654.
DOI: 10.1007/s10854-019-01734-x
Google Scholar
[26]
Y. Yang, Z. Yu, Q. Guo, et al. Thermomagnetization characteristics and ferromagnetic resonance linewidth broadening mechanism for Ca-Sn Co-substituted YIG ferrites, Ceramics International. 44 (2018) 11718-11723.
DOI: 10.1016/j.ceramint.2018.03.249
Google Scholar