Study on High Densification M-Type Ferrite Sintering Technology

Article Preview

Abstract:

When applied to devices, BaM ferrite materials are required to have magnetic properties such as high saturation magnetization, or microwave properties such as low ferromagnetic resonance linewidth, which require BaM ferrite to be as dense as possible. The density of BaM ferrite can be significantly improved by introducing pre-holding in the sintering process. The density of BaM ferrite can reach 5.06 g/cm3, the sample grain size can reach 100 μm, and the magnetic properties are close to the single crystal state after 1 h of pre-holding. The maximum 4πMs is 4606 Gs and ΔH is 487 Oe when pre-holding for 1 h, indicating its potential for application in microwave devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-93

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.G. Harris. Modern microwave ferrites, IEEE Transactions on Magnetics. 48 (2012) 1075-1104.

Google Scholar

[2] Q. Li, Y. Chen, C. Yu, L, Young, J. Spector, V.G. Harris, Emerging magnetodielectric materials for 5G communications: 18H hexaferrites, Acta Materialia. 231 (2022) 117854.

DOI: 10.1016/j.actamat.2022.117854

Google Scholar

[3] A. Cochardt. Modified strontium ferrite, a new permanent magnet material, Journal of Applied Physics.34 (1963) 1273-1274.

DOI: 10.1063/1.1729468

Google Scholar

[4] R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57(2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[5] C. Wu, W. Wang, Q. Li, et al. Barium hexaferrites with narrow ferrimagnetic resonance linewidth tailored by site-controlled Cu doping, Journal of the American Ceramic Society. 105(2022) 7492-7501.

DOI: 10.1111/jace.18702

Google Scholar

[6] L. Zhong, C. Wu, Z. Yu, et al. Enhanced magnetic properties of strontium ferrites through constructing magnetoelastic stress, Journal of the European Ceramic Society. 42(2022) 2853-2859.

DOI: 10.1016/j.jeurceramsoc.2022.01.046

Google Scholar

[7] R. Jasrotia, V. P. Singh, B. Sharma, et al. Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications, Journal of Alloys and Compounds. 830(2020) 1-6.

DOI: 10.1016/j.jallcom.2020.154687

Google Scholar

[8] A. Singh, K. M. Ranjan, S. Kumar. Electrical transport mechanism of aluminum substituted barium hexaferrite magnetic semiconductor, Journal of Materials Science: Materials in Electronics. 32(2021) 4110-4124.

DOI: 10.1007/s10854-020-05152-2

Google Scholar

[9] S.K. Godara, M. Singh, et al. Effect of calcium solubility on structural, microstructural and magnetic properties of M-type barium hexaferrite, Ceramics International. 47(2021) 20399-20406.

DOI: 10.1016/j.ceramint.2021.04.048

Google Scholar

[10] X. Liu, W. Zhang, et al. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites, Journal of Magnetism and Magnetic Materials. 238(2002) 207-214.

DOI: 10.1016/s0304-8853(01)00914-3

Google Scholar

[11] M. Ramzan, M. I. Arshard, et al. Investigation of electrical and magnetic properties of La3+ substituted M-Type Ba-Ni nano-ferrites, Journal of Superconductivity and Novel Magnetism. 32(2019) 3517-3524.

DOI: 10.1007/s10948-019-5115-3

Google Scholar

[12] T. Qiu, J. Li, et al. Low-temperature cofired Co/Zr-cosubstituted M-type barium ferrite, Journal of Electronic Materials. 46(2017) 1358-1362.

DOI: 10.1007/s11664-016-5126-9

Google Scholar

[13] A. P. Singh, O. P. Pandey. Effect of sintering additives on structural, magnetic, and dielectric properties of Ba3Co2Fe24O41 ferrite, Journal of Superconductivity and Novel Magnetism. 33(2020) 519-526.

DOI: 10.1007/s10948-019-05202-9

Google Scholar

[14] C. Huang, A. Jiang. Magnetic property enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition, Intermetallics. 89(2017) 111-117.

DOI: 10.1016/j.intermet.2017.06.001

Google Scholar

[15] S. Kanagesan, M. Hashim, S. Jesurani, et al. Effect of microwave sintering on microstructural and magnetic properties of strontium hexaferrite using sol-gel technique, Journal of Materials Science: Materials in Electronics. 24(2013) 3881-3884.

DOI: 10.1007/s10854-013-1333-9

Google Scholar

[16] Y. Tokunage, Y. Kaneko, et al. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity, Physical Review Letters. 105(2010) 257201.

DOI: 10.1103/physrevlett.105.257201

Google Scholar

[17] Q. Liu, C. Wu. Microstructure and magnetic properties of low-temperature sintered M-type hexaferrite BaZn0.6Sn0.6Fe10.8O19 for LTCC process, Journal of Magnetism and Magnetic Materials. 475(2019) 223-228.

DOI: 10.1016/j.jmmm.2018.11.059

Google Scholar

[18] J. Li, H. Zhang, et al. Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites, Journal of Rare Earths. 31(2013) 983-987.

DOI: 10.1016/s1002-0721(13)60017-4

Google Scholar

[19] J. Li, H. Zhang, et al. Ni-Ti equiatomic co-substitution of hexagonal M-type Ba(NiTi)xFe12-2xO19 ferrites, Journal of Alloys and Compounds. 649(2015) 782-787.

DOI: 10.1016/j.jallcom.2015.07.173

Google Scholar

[20] B. Zhang, Q. Zhao, et al. Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1-xYxCeNbWO8 NTC ceramics, Journal of Alloys and Compounds. 698(2017) 1-6.

DOI: 10.1016/j.jallcom.2016.12.226

Google Scholar

[21] D. Rao, G. S. Upadhyaya. Sintering of Mo2FeB2 layered cermet containing SiC fibers, Materials Chemistry and Physics. 70(2001) 336-339.

DOI: 10.1016/s0254-0584(00)00531-9

Google Scholar

[22] Q. Liu, C. Wu, et al. Textured M-type barium hexaferrite Ba(ZnSn)xFe12−2xO19 with c-axis anisotropy and high squareness ratio, Ceramics International. 45(2019) 4535-4539.

DOI: 10.1016/j.ceramint.2018.11.138

Google Scholar

[23] L. Zhong, Z. Lan, Q. Li, et al. Synergetic effect of site-controlled two-step Ca doping on magnetic and electrical properties of M-type strontium hexaferrites, Journal of the European Ceramic Society. 43(2023) 5521-5529.

DOI: 10.1016/j.jeurceramsoc.2023.05.036

Google Scholar

[24] J. S. Lee, J. M. Cha, et al. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity, Scientific Reports. 12135(2015).

DOI: 10.1038/srep12135

Google Scholar

[25] M. G. Shalini. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite, Journal of Materials Science: Materials in Electronics. 30(2019) 13647-13654.

DOI: 10.1007/s10854-019-01734-x

Google Scholar

[26] Y. Yang, Z. Yu, Q. Guo, et al. Thermomagnetization characteristics and ferromagnetic resonance linewidth broadening mechanism for Ca-Sn Co-substituted YIG ferrites, Ceramics International. 44 (2018) 11718-11723.

DOI: 10.1016/j.ceramint.2018.03.249

Google Scholar