Effect of Layer Thickness and Particle Size Distribution on the Microstructure and Properties of Ti6Al4V Processed by Laser Powder Bed Fusion

Article Preview

Abstract:

The technological advancements in laser powder bed fusion (PBF-LB/ L-PBF) processing has led to the potential in utilizing larger powder bed layer thicknesses aimed at increasing the productivity. Moreover, by increasing the layer thickness, coarser powder particle size distribution (PSD) may be employed, further improving cost-effectiveness of the process. This drives the shift towards a more sustainable process chain, while reinforcing the business cases in additive manufacturing (AM). In this study, the effect of larger layer thickness (i.e., 90 µm) using recommended PSD of 15 to 45 µm, as well as feedstock powder with a coarser PSD (i.e., 45 to 90 µm) on the surface characteristics, heat treated microstructure, and mechanical properties of Ti64 components is evaluated. The results were then compared with that of 30 and 60 µm layer thicknesses, using a standard PSD of 15 to 45 µm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-38

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mellor, L. Hao, D. Zhang, Additive manufacturing: A framework for implementation, International Journal of Production Economics 149 (2014) 194–201.

DOI: 10.1016/j.ijpe.2013.07.008

Google Scholar

[2] J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annual Review of Materials Research 46 (2016) 151–186.

DOI: 10.1146/annurev-matsci-070115-032024

Google Scholar

[3] S.R. Narasimharaju, W. Zeng, T.L. See, Z. Zhu, P. Scott, X. Jiang, S. Lou, A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends, Journal of Manufacturing Processes 75 (2022) 375–414.

DOI: 10.1016/j.jmapro.2021.12.033

Google Scholar

[4] W.E. Frazier, Metal Additive Manufacturing: A Review, J. of Materi Eng and Perform 23 (2014) 1917–1928.

DOI: 10.1007/s11665-014-0958-z

Google Scholar

[5] S. Yang, Y.F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review, Int J Adv Manuf Technol 80 (2015) 327–342.

DOI: 10.1007/s00170-015-6994-5

Google Scholar

[6] M. Laleh, E. Sadeghi, R.I. Revilla, Q. Chao, N. Haghdadi, A.E. Hughes, W. Xu, I. De Graeve, M. Qian, I. Gibson, M.Y. Tan, Heat treatment for metal additive manufacturing, Progress in Materials Science 133 (2023) 101051.

DOI: 10.1016/j.pmatsci.2022.101051

Google Scholar

[7] H.-H. König, N.H. Pettersson, A. Durga, S. Van Petegem, D. Grolimund, A.C. Chuang, Q. Guo, L. Chen, C. Oikonomou, F. Zhang, G. Lindwall, Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction, Acta Materialia 246 (2023) 118713.

DOI: 10.1016/j.actamat.2023.118713

Google Scholar

[8] Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), (n.d.). https://www.astm.org/f0136-13r21e01.html (accessed March 23, 2024).

DOI: 10.1520/f0136-98e01

Google Scholar

[9] A. Gutierrez, M. Hahn, Y.-J. Li, A. Dehbozorgi, W. Hohorst, M. Schwartz, J. Orlita, Y.T. Hein, N. Guanzon, X. Sun, O.S. Es-Said, The Effect of Different Annealing Conditions on the Anisotropy of the Fracture Toughness of Ti-6Al-4V, J. of Materi Eng and Perform 28 (2019) 7155–7164.

DOI: 10.1007/s11665-019-04449-6

Google Scholar

[10] A. Leicht, M. Fischer, U. Klement, L. Nyborg, E. Hryha, Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness, J. of Materi Eng and Perform 30 (2021) 575–584.

DOI: 10.1007/s11665-020-05334-3

Google Scholar

[11] F. Deirmina, O. Adegoke, M.D. Col, M. Pellizzari, Effect of layer thickness, and laser energy density on the recrystallization behavior of additively manufactured Hastelloy X by laser powder bed fusion, Additive Manufacturing Letters 7 (2023) 100182.

DOI: 10.1016/j.addlet.2023.100182

Google Scholar

[12] C. Pauzon, A. Raza, I. Hanif, S. Dubiez-Le Goff, J. Moverare, E. Hryha, Effect of layer thickness on spatter properties during laser powder bed fusion of Ti–6Al–4V, Powder Metallurgy 66 (2023) 333–342.

DOI: 10.1080/00325899.2023.2192036

Google Scholar

[13] A. Raza, C. Pauzon, S. Dubiez-Le Goff, E. Hryha, Effect of processing gas on spatter generation and oxidation of TiAl6V4 alloy in laser powder bed fusion process, Applied Surface Science 613 (2023) 156089.

DOI: 10.1016/j.apsusc.2022.156089

Google Scholar

[14] Q.B. Nguyen, D.N. Luu, S.M.L. Nai, Z. Zhu, Z. Chen, J. Wei, The role of powder layer thickness on the quality of SLM printed parts, Archiv.Civ.Mech.Eng 18 (2018) 948–955.

DOI: 10.1016/j.acme.2018.01.015

Google Scholar

[15] M.A. Spurek, L. Haferkamp, C. Weiss, A.B. Spierings, J.H. Schleifenbaum, K. Wegener, Influence of the particle size distribution of monomodal 316L powder on its flowability and processability in powder bed fusion, Prog Addit Manuf 7 (2022) 533–542.

DOI: 10.1007/s40964-021-00240-z

Google Scholar

[16] 200-315 Abstracts, (n.d.). https://www.mpif.org/Events/PowderMet2021/Program/ TechnicalSession/Monday/200-315/200-315Abstracts.aspx (accessed March 23, 2024).

Google Scholar

[17] G. Soundarapandiyan, C. Johnston, R.H.U. Khan, C.L.A. Leung, P.D. Lee, E. Hernández-Nava, B. Chen, M.E. Fitzpatrick, The effects of powder reuse on the mechanical response of electron beam additively manufactured Ti6Al4V parts, Additive Manufacturing 46 (2021) 102101.

DOI: 10.1016/j.addma.2021.102101

Google Scholar

[18] L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.-P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Materialia 58 (2010) 3303–3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[19] B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds 541 (2012) 177–185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar