Large Titanium Preforms Manufactured by Cold Spray

Article Preview

Abstract:

This presentation provides an overview of the recent collaboration between CSIRO and The Boeing Company focused on developing preforms of high-temperature titanium alloys. This collaboration devised a new method for manufacturing preforms, shaped intermediates and mill products directly from titanium powder. These preforms can then undergo thermomechanical processing to produce parts requiring minimal surface finishing with the desired microstructure and mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, et al., Cold spray additive manufacturing and repair: Fundamentals and applications, Additive Manufacturing 21 (2018) 628-50.

DOI: 10.1016/j.addma.2018.04.017

Google Scholar

[2] R. Vaz, A. Garfias, V. Albaladejo, J. Sanchez, I. Cano, A Review of Advances in Cold Spray Additive Manufacturing, Coatings 13 (2023).

DOI: 10.3390/coatings13020267

Google Scholar

[3] W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, Solid-state additive manufacturing and repairing by cold spraying: A review, J Mater Sci Technol 34 (2018) 440-57.

DOI: 10.1016/j.jmst.2017.09.015

Google Scholar

[4] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V.M. Fomin, Cold Spray Technology: Elsevier Science; 2006.

DOI: 10.1016/b978-008045155-8/50003-x

Google Scholar

[5] V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, A.N. Papyrin, On some aspects of gas dynamics of the cold spray process, J Therm Spray Technol 12 (2003) 265-81.

DOI: 10.1361/105996303770348384

Google Scholar

[6] M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater Design 25 (2004) 681-8.

DOI: 10.1016/j.matdes.2004.03.008

Google Scholar

[7] T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, Key Eng Mater 533 (2013) 53-90.

DOI: 10.4028/www.scientific.net/kem.533.53

Google Scholar

[8] H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying, Acta Materialia 51 (2003) 4379-94.

DOI: 10.1016/s1359-6454(03)00274-x

Google Scholar

[9] S.H. Zahiri, C.I. Antonio, M. Jahedi, Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying, Journal of Materials Processing Technology 209 (2009) 922-9.

DOI: 10.1016/j.jmatprotec.2008.03.005

Google Scholar

[10] M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, M. Jahedi, R. Nagarajah, PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field, J Therm Spray Technol 26 (2017) 941-57.

DOI: 10.1007/s11666-017-0567-0

Google Scholar

[11] M. Faizan-Ur-Rab, S.H. Zahiri, P.C. King, C. Busch, S.H. Masood, M. Jahedi, et al., Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing, J Therm Spray Technol 26 (2017) 1874-87.

DOI: 10.1007/s11666-017-0628-4

Google Scholar

[12] M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, M. Jahedi, R. Nagarajah. 3D CFD Multicomponent Model for Cold Spray Additive Manufacturing of Titanium Particles, in CFD Modeling and Simulation in Materials Processing 2016, Springer Cham, (2016), 213-20.

DOI: 10.1002/9781119274681.ch26

Google Scholar

[13] M.F.U. Rab, S. Zahiri, S.H. Masood, M. Jahedi, R. Nagarajah, Development of 3D Multicomponent Model for Cold Spray Process Using Nitrogen and Air, Coatings 5 (2015) 688-708.

DOI: 10.3390/coatings5040688

Google Scholar

[14] P.C. King, S. Gulizia, A.J. Urban, J.E. Barnes, Process for producing a preform using cold spray​ United States Patent 2017/0157671 A1 (2017).

Google Scholar

[15] S.M. Mousavi, E. Roohi, Three dimensional investigation of the shock train structure in a convergent–divergent nozzle, Acta Astronautica 105 (2014) 117-27.

DOI: 10.1016/j.actaastro.2014.09.002

Google Scholar

[16] H. Jafari, S. Emami, Y. Mahmoudi, Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: A study on nozzle geometrical parameters, Applied Thermal Engineering 111 (2017) 745-58.

DOI: 10.1016/j.applthermaleng.2016.09.145

Google Scholar

[17] M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, R. Nagarajah, Application of a holistic 3D model to estimate state of cold spray titanium particles, Mater Design 89 (2016) 1227-41.

DOI: 10.1016/j.matdes.2015.10.075

Google Scholar

[18] Y. Jiang, Q. Zheng, P. Dong, J. Yao, H. Zhang, J. Gao, Conjugate heat transfer analysis of leading edge and downstream mist–air film cooling on turbine vane, International Journal of Heat and Mass Transfer 90 (2015) 613-26.

DOI: 10.1016/j.ijheatmasstransfer.2015.07.005

Google Scholar

[19] A. Proskurin, Y. Zheglova, Ansys CFX Study of Aerodynamic Characteristics during Blade Profile Rotation, International Journal for Computational Civil and Structural Engineering 17 (2021) 153-60.

DOI: 10.22337/2587-9618-2021-17-4-153-160

Google Scholar

[20] R.R. Salakhov, A. Ermakov, E. Gabdulkhakova, Numerical and Experimental Study of the Impeller of a Liquid Pump of a Truck Cooling System and the Development of a New Open-Type Impeller, Tehnički glasnik 14 (2020) 135-42.

DOI: 10.31803/tg-20200309115417

Google Scholar

[21] P. Dhopade, A.J. Neely, Aeromechanical Modeling of Rotating Fan Blades to Investigate High-Cycle and Low-Cycle Fatigue Interaction, Journal of Engineering for Gas Turbines and Power 137 (2015) 052505.

DOI: 10.1115/1.4028717

Google Scholar

[22] S. Gulizia, A. Trentin, S. Vezzu, S. Rech, P. King, M. Jahedi, et al., Characterisation of Cold Spray Titanium Coatings, In: Nie JF, Morton A, editors. PRICM7 Durnten-Zurich: Trans Tech Publications Ltd; 2010. pp.898-901.

DOI: 10.4028/www.scientific.net/msf.654-656.898

Google Scholar

[23] Information on https://www.matweb.com/search/datasheet_print.aspx?matguid=66f20965748441d8916768ed80be0cba.

Google Scholar

[24] H. Zhou, Microstructure control and properties of cold-sprayed titanium and its alloy coatings, Materials Science and Technology 37 (2021) 121-43.

DOI: 10.1080/02670836.2020.1868689

Google Scholar

[25] M. Rezaee, A. Zarei-Hanzaki, A. Mohamadizadeh, E. Ghasemi, High-temperature flow characterization and microstructural evolution of Ti6242 alloy: Yield drop phenomenon, Materials Science and Engineering: A 673 (2016) 346-54.

DOI: 10.1016/j.msea.2016.07.043

Google Scholar