[1]
B. Dutta, F.H. Froes. Additive manufacturing of titanium alloys, Advanced materials & processes, Advanced Materials Research, 1019, (2014), pp.19-25
DOI: 10.4028/www.scientific.net/amr.1019.19
Google Scholar
[2]
M.J. Donachie, Titanium: A technical guide, 2nd edition, Ohio: ASM International, (2000)
Google Scholar
[3]
I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies, 2nd edition. New York: Springer, (2015)
Google Scholar
[4]
K.M. Rajan, A.K. Sahoo, B.C. Routara, A. Panda, R. Kumar, A review on various approaches of 3D printing of Ti-Alloy, Mater. Today Proc., 62, (2022), 3865-3868.
DOI: 10.1016/j.matpr.2022.04.532
Google Scholar
[5]
ISO/ASTM 52900:2021, Additive manufacturing — General principles — Fundamentals and vocabulary, (2021)
Google Scholar
[6]
H.A. Hegab, Design for additive manufacturing of composite materials and potential alloys: a review, Manufacturing Review, 3, (2016), p.11.
DOI: 10.1051/mfreview/2016010
Google Scholar
[7]
I. Gibson, D. Rosen, B. Stucker, Introduction and Basic Principles, Additive Manufacturing Technologies, (2015), p.1–18.
DOI: 10.1007/978-1-4939-2113-3_1
Google Scholar
[8]
A. Wiberg, Towards Design Automation for Additive Manufacturing: A Multidisciplinary Optimization approach, 1854, (2015)
Google Scholar
[9]
J.O. Milewski, Additive Manufacturing of metals: from fundamental technology to Rocket nozzles, Medical implants, and custom jewelry. Springer Series in Materials Science 258, Springer, USA, (2017), pp.131-150.
Google Scholar
[10]
3DCEO, Intro to Metal 3D Printing Processes – Powder Bed Fusion (DMLS, SLS, SLM, LMF, DMP, EBM), (2018).
Google Scholar
[11]
D.S Thomas, Economics of Additive Manufacturing, Laser-Based Additive Manufacturing of Metal Parts, (2018), p.285–320.
DOI: 10.1201/9781315151441-9
Google Scholar
[12]
M. Vaezi, P. Drescher, H. Seitz, Beamless Metal Additive Manufacturing, Materials 13, (2020) p.922.
DOI: 10.3390/ma13040922
Google Scholar
[13]
J. Gonzalez-Gutierrez, Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives, Materials, 11, (2018), p.840.
DOI: 10.3390/ma11050840
Google Scholar
[14]
L. Cherdo, Metal 3D printers in 2022: a comprehensive guide, Aniwaa, (2022).
Google Scholar
[15]
L. Clemens, A. Harder, S. Hermann, Extrusion Based Additive Manufacturing of Metal Parts, Journal of Mechanics Engineering and Automation, 7, (2017).
DOI: 10.17265/2159-5275/2017.02.004
Google Scholar
[16]
B.K. Post, The Economics of Big Area Additive Manufacturing, Proceedings of the solid Freeform Fabrication Symposium, (2016), p.1176–1182.
Google Scholar
[17]
A.Y. Korotchenko, Use of additive technologies for metal injection molding, Engineering Solid Mechanics, 8, (2020) p.143–150.
DOI: 10.5267/j.esm.2019.10.001
Google Scholar
[18]
S.H. Luk, Bulk Properties of Powders, Powder Metallurgy, 7, (2018), p.111–126.
Google Scholar
[19]
A. Jenike, Storage and Flow of Solids, Bulletin No. 123 of the Utah Engineering Experiment Station, University of Utah, (1968).
Google Scholar
[20]
J. Choque. Optimización y control de calidad en la construcción de silo de almacenamiento para material puzolánico. National University of San Agustin. (2016)
Google Scholar