Comparison between TiN Coating on Porous Ti-6Al-4V Produced by PBF-EB/M or PM for Bipolar Plates in PEM Fuel Cells

Article Preview

Abstract:

The exceptional corrosion resistance, low weight, and high strength of titanium (Ti) make it an excellent choice for components in proton exchange membrane fuel cells (PEMFC). However, during PEMFC operation, Ti undergoes passivation, which diminishes the bipolar plates' (BP) ability to transport electrons between cells. Applying titanium nitride (TiN) coatings, known for their good conductive properties, can resolve this issue and enhance corrosion resistance. Additionally, using additive manufacturing (AM) to produce BP offers numerous benefits in terms of structural control for more intricate designs. This study examines the impact of TiN coating via gas nitriding on Ti-6Al-4V open structures created by powder bed fusion-electron beam/metal (PBF-EB/M) or PM routes, focusing on the surface characteristics such as composition and interfacial contact resistance (ICR).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-88

Citation:

Online since:

March 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Cheng et al., "Improving the performance of titanium bipolar plate in proton exchange membrane water electrolysis environment by nitrogen-chromium composite cathode plasma electrolytic deposition," Int J Hydrogen Energy, vol. 48, no. 98, pp.38557-38568 Jul. (2023)

DOI: 10.1016/j.ijhydene.2023.06.177

Google Scholar

[2] A.N. Mancino, C. Menale, F. Vellucci, M. Pasquali, and R. Bubbico, "PEM Fuel Cell Applications in Road Transport," Energies, vol. 16, no. 17. Multidisciplinary Digital Publishing Institute (MDPI), Sep. 01, (2023)

DOI: 10.3390/en16176129

Google Scholar

[3] H. Ito, T. Maeda, A. Nakano, A. Kato, and T. Yoshida, "Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer," Electrochim Acta, vol. 100, p.242–248, Jun. (2013)

DOI: 10.1016/j.electacta.2012.05.068

Google Scholar

[4] S. Mekhilef, R. Saidur and A. Safari, "Comparative study of different fuel cell technologies", Renewable and Sustainable Energy Reviews, vol 16, pp.981-989, Oct. (2012)

DOI: 10.1016/j.rser.2011.09.020

Google Scholar

[5] C. Qiu, Z. Xu, F-Y. Chen and H. Wang, "Anode Engineering for Proton Exchange Membrane Water Electrolyzers", ACS Catalysis, vol. 14, pp.921-954, Jan. (2024)

DOI: 10.1021/acscatal.3c05162

Google Scholar

[6] A. Tang, L. Crisci, L. Bonville and J. Jankovic, "An overview of bipolar plates in proton exchange membrane fuel cells", Journal of renewable and sustainable energy, vol. 13, 022701, (2021)

DOI: 10.1063/5.0031447

Google Scholar

[7] Z. Xu, D. Qiu, P. Yi, L. Peng and X. Lai, "Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC", Progress in natural science, vol. 30, n.o 6, pp.815-824, (2020)

DOI: 10.1016/j.pnsc.2020.10.015

Google Scholar

[8] K. Karacan, S. Celik, S. Toros, M. Alkan, y U. Aydin, "Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells", International journal of hydrogen energy, vol. 45, n.o 60, pp.35149-35161, (2020)

DOI: 10.1016/j.ijhydene.2020.01.251

Google Scholar

[9] S. Porstmann, T. Wannemacher, W-G. Drossel, "A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends", Journal of Manufacturing Processes, vol. 60, pp.366-383, Oct. (2020)

DOI: 10.1016/j.jmapro.2020.10.041

Google Scholar

[10] Z. Ren, D. Zhang, and Z. Wang, "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, vol. 48, no. 1, p.577–581, (2012)

DOI: 10.1016/j.energy.2012.10.020

Google Scholar

[11] B. Avasarala and P. Haldar, "Electrochemical oxidation behavior of titanium nitride based elecrocatalysts under PEM fuel cell conditions", Electrochimica Acta, vol. 55, pp.9024-9034, Aug. (2010)

DOI: 10.1016/j.electacta.2010.08.035

Google Scholar

[12] T.J. Toops et. al., "Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells", Journal of Power Sources, vol. 272, pp.954-960, Sep. (2014)

DOI: 10.1016/j.jpowsour.2014.09.016

Google Scholar

[13] D. Zhang et. al., "TiN-coated titanium as the bipolar plates for PEMFC by multi-arc ion plating", International journal of hydrogen energy, vol 36, pp.9155-9161, Apr. (2011)

DOI: 10.1016/j.ijhydene.2011.04.123

Google Scholar

[14] A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano, and M. Garmendia Mujika, "Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review," International Journal of Hydrogen Energy, vol. 37, no. 20. Elsevier Ltd, p.15256–15287, (2012)

DOI: 10.1016/j.ijhydene.2012.07.076

Google Scholar

[15] A. Baroutaji, J. G. Carton, J. Stokes, and A. G. Olabi, "Application of Open Pore Cellular Foam for air breathing PEM fuel cell," Int J Hydrogen Energy, vol. 42, no. 40, p.25630–25638, Oct. (2017)

DOI: 10.1016/j.ijhydene.2017.05.114

Google Scholar

[16] J. K. Lee et al., "Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers," Energy Convers Manag, vol. 226, Dec. (2020)

DOI: 10.1016/j.enconman.2020.113545

Google Scholar

[17] H. Wang, M. A. Sweikart, and J. A. Turner, "Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells," J Power Sources, vol. 115, no. 2, p.243–251, Apr. (2003)

DOI: 10.1016/s0378-7753(03)00023-5

Google Scholar