Prediction of Mechanical Shear Force of Friction Stir Spot Welded Joints Using Neural Network System

Article Preview

Abstract:

An artificial neural network (ANN) system was created to analyze and simulate the relationship between process parameters of dissimilar weld joints of Aluminum alloy 6061 (AA60061) and pure copper and their resulting mechanical properties. In this study, 2.2 mm thick Aluminum Alloy 6061 and 1.4 mm thick pure copper lap joints are welded using friction stir spot welding (FSSW) process. Tensile-shear tests were performed to evaluate the mechanical characteristics of the lap joints. The welding process parameters are tool speed, plunge depth, and dwell weld time. Optimum friction stir spot welding (FSSW) parameters are identified to achieve the maximum shear load for Aluminum alloy (AA 6061) and pure copper lap joints. This is accomplished at a rotational speed of 2000 rpm for a duration of 20 seconds, with a plunge depth of 0.2 mm. At 15s dwell time and 2000 rpm tool speed, the shear load increases with increasing plunge depth. The best regression neural network that has the least mean squared error of 0.10192 and coefficient of correlation of 0.85033 is the model of 5 neurons in the hidden layer of the system

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-40

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mortimer, Jaguar 'Roadmap' rethinks self-piercing technology, Ind. Robot: Int. J. 32 (2005) 209-213.

DOI: 10.1108/01439910510593875

Google Scholar

[2] M. Newishy, et al., Friction Stir Welding of Dissimilar Al 6061-T6 to AISI 316 Stainless Steel: Microstructure and Mechanical Properties, Mater. 16 (2023) 4085.

DOI: 10.3390/ma16114085

Google Scholar

[3] M.H. Fahmy, et al., Friction stir spot welding of AA2024-T3 with modified refill technique, Key Eng. Mater. 835 (2020) 274-287.

DOI: 10.4028/www.scientific.net/kem.835.274

Google Scholar

[4] R. Hancock, Friction welding of aluminum cuts energy costs by 99%, Weld. J. 83 (2004)40-43.

Google Scholar

[5] T. Shibayanagi, et al., Friction stir spot welding of pure aluminum sheet in view of high temperature deformation, Trans. JWRI 40 (2011) 1-5.

Google Scholar

[6] T. Pan, Friction Stir Spot Welding (FSSW) - A Literature Review, SAE Technical Paper 2007-01-1702, Res. Adv. Eng., Ford Motor Company, 2007, 1-12.

DOI: 10.4271/2007-01-1702

Google Scholar

[7] Y. Xu, et al., Precipitation behavior of intermetallic compounds and their effect on mechanical properties of thick plate friction stir welded Al/Mg joint, J. Manuf. Process. 64 (2021) 1059-1069.

DOI: 10.1016/j.jmapro.2020.12.068

Google Scholar

[8] M. Ragab, et al., Numerical and experimental study of underwater friction stir welding of 1Cr11Ni2W2MoV heat-resistant stainless steel, J. Mater. Res. Technol. 29 (2024) 130-148.

DOI: 10.1016/j.jmrt.2024.01.100

Google Scholar

[9] V. Balasubramanian, Relationship between base metal properties and friction stir welding process parameters, Mater. Sci. Eng. 480 (2007) 397-403.

DOI: 10.1016/j.msea.2007.07.048

Google Scholar

[10] R. Karthikeyan, V. Balasubramanian, Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM, Int. J. Adv. Manuf. Technol. 51 (2010) 173-183.

DOI: 10.1007/s00170-010-2618-2

Google Scholar

[11] M. El-Shennawy, H.A. Abdel-Aleem, M.M. Ghanem, A.M. Sehsah. Effect of welding parameters on microstructure and mechanical properties of dissimilar AISI 304/ductile cast iron fusion welded joints. Sci Rep. 2024;14:19827.

DOI: 10.1038/s41598-024-70050-0

Google Scholar

[12] J. You, et al., Improving the microstructure and mechanical properties of Al-Cu dissimilar joints by ultrasonic dynamic-stationary shoulder friction stir welding, J. Mater. Process. Technol. 311 (2023) 117812.

DOI: 10.1016/j.jmatprotec.2022.117812

Google Scholar

[13] O. Mypati, et al., An investigation of mechanical and electrical properties of friction stir welded Al and Cu busbar for battery pack applications, Mater. Chem. Phys. 287 (2022) 126373.

DOI: 10.1016/j.matchemphys.2022.126373

Google Scholar

[14] C. Connolly, Friction spot joining in aluminum car bodies, Ind. Robot: Int. J. 34 (2007) 17-20.

DOI: 10.1108/01439910710718397

Google Scholar

[15] R. Khajeh, et al., Strength-ductility synergic enhancement in friction stir welded AA2024 alloy and copper joints: Unravelling the role of Zn interlayer's thickness, J. Mater. Res. Technol. 16 (2022) 251-262.

DOI: 10.1016/j.jmrt.2021.11.133

Google Scholar

[16] H. Abdel-Aleem, et al., Evaluation of ultrasonic dissimilar welds by ultrasonic testing immersion method C-scope mode, Acad. J. Manuf. Eng. 15 (2017).

Google Scholar

[17] S.A. Khodir, et al., Effect of intermetallic compound phases on the mechanical properties of the dissimilar Al/Cu friction stir welded joints, J. Mater. Eng. Perform. 25 (2016) 4637-4648.

DOI: 10.1007/s11665-016-2314-y

Google Scholar

[18] W.B. Lee, S.B. Jung, Void free friction stir weld zone of the dissimilar 6061 aluminum and copper joint by shifting the tool insertion location, Mater. Res. Innov. 8 (2004) 93-96.

DOI: 10.1080/14328917.2004.11784837

Google Scholar

[19] M. Morsy, H. Abdel-Aleem, E. El-KASHIF, Dissimilar Friction Stir Spot Welding of Aluminum, Steel, and Brass Alloys, J. Eng. Appl. Sci. 57 (2010) 149-165.

Google Scholar

[20] H. Abdel-Aleem, et al., Evaluation by ultrasonic testing and TEM observation of bond interface for ultrasonic bonds of 5052/SUS304 and 5052/SPCC, Q. J. Jpn. Weld. Soc. 23 (2005) 194-202.

DOI: 10.2207/qjjws.23.194

Google Scholar

[21] H. Abdel-Aleem, et al., Joining of A1050/A5052 and A1050/Cu by Ultrasonic Bonding and their Materials Evaluation, Q. J. Jpn. Weld. Soc. 21 (2003) 493-500.

DOI: 10.2207/qjjws.21.493

Google Scholar

[22] A. Bezazi, S. Gareth Pierce, K. Worden, Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network, Int. J. Fatigue 29 (2007) 738-747.

DOI: 10.1016/j.ijfatigue.2006.06.013

Google Scholar

[23] V. Moosabeiki Dehabadi, S. Ghorbanpour, G. Azimi, Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets, J. Cent. South Univ. 23 (2016) 2146-2155.

DOI: 10.1007/s11771-016-3271-1

Google Scholar

[24] H. Atharifar, Optimum parameters design for friction stir spot welding using a genetically optimized neural network system, Dep. Ind. Technol., Millersville Univ. Pennsylvania, Millersville, PA 17551, USA, 2009, 1-10.

DOI: 10.1243/09544054jem1467

Google Scholar

[25] J. Kiusalaas, Numerical methods in engineering with matlab, Cambridge University Press, New York, USA, 2009, 1-435.

Google Scholar