A Review of Corrosion Threat in Marine Industry

Article Preview

Abstract:

Corrosion poses a significant challenge in the marine industry, leading to the deterioration of equipment and structures, and resulting in substantial costs for its management and control. This comprehensive review focuses on how metal structures in marine environments, such as ships, are affected by corrosion. It explores different forms of corrosion and strategies to prevent it, particularly in the context of marine vessels. The review includes real-world examples of ships, highlights the financial impact of corrosion in the marine sector, and examines the factors contributing to its occurrence. Corrosion prevents a significant issue for marine vessels and related equipment due to the potential damage to the metal they constructed form. However, there are effective methods to mitigate this problem, such as employing corrosion-inhibiting substances and selecting appropriate materials. The susceptibility of materials to corrosion varies depending on their composition, resulting in either widespread deterioration or localized damages. By thoroughly examining the corrosion challenge within the maritime industry, this review provides insights into managing and mitigating its effects more efficiently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-78

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.W. Zhong, Processes for environmentally friendly and/or cost-effective manufacturing. Materials and Manufacturing Processes, 36(9), (2021) pp.987-1009.

DOI: 10.1080/10426914.2021.1885709

Google Scholar

[2] A. Taheri, A review on marine corrosion management and mitigation strategies. Journal of Marine Science and Engineering, 8(6). 414. (2020).

Google Scholar

[3] P. Liu, H. Zhang, Y. Fan, D. Xu, Microbially influenced corrosion of steel in marine environments: A review from mechanisms to prevention. Microorganisms, 11(9), (2023) p.2299.

DOI: 10.3390/microorganisms11092299

Google Scholar

[4] T. Tezdogan, Corrosion of materials in a marine environment. In marine tecbology and Engineering. CRC Press. (pp.115-140) 2014.

Google Scholar

[5] O.A. Odunlami, O.S.I. Fayomi, S. Tijani, J.O. Fayomi, Chemical Adsorption Data's, Temperature Effect and Structural Properties of Artemether-Lumefantrine Corrosion Inhibition Properties on Structural Steel in 0.62 M NaCl. Key Engineering Materials, 886, (2021) pp.143-155.

DOI: 10.4028/www.scientific.net/kem.886.143

Google Scholar

[6] M.A. Fajobi, O.S.I. Fayomi, G. Akande, O.A. Odunlami, O.O. Oluwole, Evaluation of the Inhibitive Effect of Ibuprofen Drug on the Acidic Corrosion of Aluminium 6063 Alloy. Key Engineering Materials, 886, (2021) pp.133-142.

DOI: 10.4028/www.scientific.net/kem.886.133

Google Scholar

[7] O. A. Odunlami, Zea Mays Surfactant as Corrosion Inhibition of Copper and its Electrochemical Assessment in Hot Acidic Solution for Chemo-Mechanical Application. Vol 1050, (2022). pp.81-91.

DOI: 10.4028/www.scientific.net/msf.1050.81

Google Scholar

[8] J.H. Chow. Passive Conservation in Archaeological Practice-The Design, Trial and Results of an Experiment with Marine Waterlogged Wood from the Mary Rose. The University of Manchester (United Kingdom) 2016.

Google Scholar

[9] G. Chliveros, S.V. Kontomaris, A. Letsios. Automatic Identification of Corrosion in Marine Vessels Using Decision-Tree Imaging Hierarchies. Eng, 4(3), (2023) pp.2090-2099.

DOI: 10.3390/eng4030118

Google Scholar

[10] R.W. Revie. Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons (2008).

Google Scholar

[11] V. Vasagar, M.K. Hassan, A.M Abdullah, A.V. Karre, B. Chen, K. Kim, N. Al-Qahtani, T. Cai, Non-destructive techniques for corrosion detection: A review. Corrosion Engineering, Science and Technology, 59(1), (2024) pp.56-85.

DOI: 10.1177/1478422x241229621

Google Scholar

[12] A. Shokri, M.S. Fard, Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies. Chemosphere, 307, (2022) p.135640.

DOI: 10.1016/j.chemosphere.2022.135640

Google Scholar

[13] K. Popova, T. Prošek, 2022. Corrosion monitoring in atmospheric conditions: a review. Metals, 12(2), (2022) p.171.

DOI: 10.3390/met12020171

Google Scholar

[14] G. A. Cragnolino, Corrosion fundamentals and characterization techniques. In Techniques for corrosion monitoring (pp.7-42). Woodhead Publishing (2021).

DOI: 10.1016/b978-0-08-103003-5.00002-3

Google Scholar

[15] M. Elboudjaini, Pitting corrosion of aluminium alloy in chloride solutioon:Influence of anodic polarization. Materials Chemistry and Physics, 101(1), (2007). pp.37-44.

Google Scholar

[16] D.M. Miller, R.S. Lillard, An investigation into the stages of alloy 625 crevice corrosion in an ocean water environment: initiation, propagation and repassivation in a remote crevice assembly. Journal of The Electrochemical Society, 166(11), (2019). pp.C3431.

DOI: 10.1149/2.0491911jes

Google Scholar

[17] D.A. Shifler, Localized Corrosion. LaQue's Handbook of Marine Corrosion, (2022) pp.63-121.

Google Scholar

[18] E. McCafferty, Surface chemistry of aqueous corrosion processes (p.96). Cham: Springer (2015).

Google Scholar

[19] T. Bohackova, J. Ludvik, M. Kouril, Metallic material selection and prospective surface treatments for proton exchange membrane fuel cell bipolar plates—a review. Materials, 14(10), (2021) p.2682.

DOI: 10.3390/ma14102682

Google Scholar

[20] J.O. Okeniyi, C10H18N2Na2O10 inhibition and adsorption mechanism on concrete steel-reinforcement corrosion in corrosive environments. Journal of the Association of Arab Universities for Basic and Applied Sciences, 20, (2016) pp.39-48.

DOI: 10.1016/j.jaubas.2014.08.004

Google Scholar

[21] A. Habib, A.A. Houri, S. Al-Toubat, M.T. Junaid, Experimental Techniques for Testing the Properties of Construction Materials (2024).

DOI: 10.20944/preprints202405.1987.v1

Google Scholar

[22] T. Zhao, T. Chen, Y. Wang, M. Wang, M. Bakir, M. Dahmen, W. Cai, C. Hong, T. Schopphoven, N. Pirch, M. Brucki, Laser directed energy deposition of an AlMgScZr-alloy in high-speed process regimes. Materials, 15(24), (2022) p.8951.

DOI: 10.3390/ma15248951

Google Scholar

[23] A.J. Sedriks, Stress-corrosion cracking of stainless steels. In Stress-Corrosion Cracking: Materials Performance and Evaluation (pp.95-134). ASM International 2017.

DOI: 10.31399/asm.tb.sccmpe2.t55090095

Google Scholar

[24] J.R. Scully, Effects of Stress–Environment Assisted Cracking. LaQue's Handbook of Marine Corrosion, (2022) pp.239-289.

DOI: 10.1002/9781119788867.ch10

Google Scholar

[25] M.A. Kappes, Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review. Corrosion Reviews, 38(1), (2020) pp.1-24.

DOI: 10.1515/corrrev-2019-0061

Google Scholar

[26] K.K. Maniam, S. Paul. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment. Corrosion and Materials Degradation, 2(2), (2021) pp.163-189.

DOI: 10.3390/cmd2020010

Google Scholar

[27] A.K. Tripathi, P. Thakur, P. Saxena, S. Rauniyar, V. Gopalakrishnan, R.N. Singh, V. Gadhamshetty, E.Z. Gnimpieba, B.K. Jasthi, R.K. Sani. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Frontiers in microbiology, 12, (2021) p.754140.

DOI: 10.3389/fmicb.2021.754140

Google Scholar

[28] L. Trutschel, Investigating the microbial ecology of a high pH serpentinizing system-Ney Springs (Doctoral dissertation, University of Cincinnati) 2023.

Google Scholar

[29] D. Garrelfs, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Applied and environmental microbiology, 80(4), (2014) pp.1226-1236.

DOI: 10.1128/aem.02848-13

Google Scholar

[30] R.R. Elewa, O.S. Fayomi, O.O Joseph, Insight on the Dynamics of Corrosion and Anti-Corrosion Protection Progresses on Steel: A Brief Review. Journal of Bio-and Tribo-Corrosion, 10(3), (2024) p.51.

DOI: 10.1007/s40735-024-00857-x

Google Scholar

[31] A.C. Santa, J.A. Tamayo, C.D. Correa, M.A. Gómez, J.G. Castaño, L.M. Baena,. Atmospheric corrosion maps as a tool for designing and maintaining building materials: A review. Heliyon, 8(9) (2022).

DOI: 10.1016/j.heliyon.2022.e10438

Google Scholar

[32] A. Doménech-Carbó, M.T. Doménech-Carbó, Metallic Heritage: Electrochemistry of Metal Objects. In Electrochemistry for Cultural Heritage (pp.299-333). Cham: Springer International Publishing (2023).

DOI: 10.1007/978-3-031-31945-7_11

Google Scholar

[33] C.G. Soares, T.A. Santos, eds., Advances in Maritime Technology and Engineering. CRC Press, Taylor & Francis Group (2024).

Google Scholar

[34] T. Keerthipalli, R. Aepuru, A. Biswas, Review on precipitation, intermetallic and strengthening of aluminum alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237(6-7), (2023) pp.833-850.

DOI: 10.1177/09544054221111901

Google Scholar

[35] K. Morshed-Behbahani, A. Nasiri, Corrosion response of steels fabricated through arc directed energy deposition additive manufacturing: a review. Materials Horizons (2024).

DOI: 10.1039/d4mh00226a

Google Scholar

[36] P. Liu, H. Zhang, Y. Fan, D. Xu, Microbially influenced corrosion of steel in marine environments: A review from mechanisms to prevention. Microorganisms, 11(9), (2023) p.2299.

DOI: 10.3390/microorganisms11092299

Google Scholar

[37] N. Hosseinzadeh, M. Ghiasian, E. Andiroglu, J. Lamere, L. Rhode-Barbarigos, J. Sobczak, K.S. Sealey, P. Suraneni, Concrete Seawalls: Load Considerations, Ecological Performance, Durability, and Recent Innovations (2021).

DOI: 10.31224/osf.io/h6zt8

Google Scholar

[38] M. Kamaratou, S. Liakaki‐Stavropoulou K.D. Demadis. Multifunctional Additives for Synergistic Scale and Corrosion Inhibition in High‐Stress Systems. Industrial Scale Inhibition: Principles, Design, and Applications, (2024) pp.483-550.

DOI: 10.1002/9781394191208.ch22

Google Scholar

[39] C.G. Soares, T.A. Santos, eds., Advances in Maritime Technology and Engineering. CRC Press, Taylor & Francis Group (2024).

Google Scholar

[40] A. Yousefi Kanani, S. Green, X. Hou, J. Ye, Hybrid and adhesively bonded joints with dissimilar adherends: a critical review. Journal of Adhesion Science and Technology, 35(17), (2021) pp.1821-1859.

DOI: 10.1080/01694243.2020.1861859

Google Scholar

[41] G.J. Lim, J. Cho, S. Bora, T. Biobaku, H. Parsaei, Models and computational algorithms for maritime risk analysis: a review. Annals of Operations Research, 271, (2018) pp.765-786.

DOI: 10.1007/s10479-018-2768-4

Google Scholar

[42] Vukelić, G. and Vizentin, G., Common case studies of marine structural failures. Failure Analysis and Prevention. InTech, (2017) pp.135-51.

DOI: 10.5772/intechopen.72789

Google Scholar

[43] M.H. Wood, A.V. Arellano, L. Van Wijk, Corrosion related accidents in petroleum refineries. European Commission Joint Research Centre, report no. EUR, 26331 (2013).

Google Scholar

[44] C. Googan, Marine Corrosion and Cathodic Protection. CRC Press (2022).

Google Scholar

[45] L. Xu, Y. Xin, L. Ma, H. Zhang, Z. Lin, X. Li, Challenges and solutions of cathodic protection for marine ships. Corrosion Communications, 2, (2021) pp.33-40.

DOI: 10.1016/j.corcom.2021.08.003

Google Scholar

[46] N. Sridhar, R. Thodla, F. Gui, L. Cao, A. Anderko, Corrosion-resistant alloy testing and selection for oil and gas production. Corrosion Engineering, Science and Technology, 53(1_suppl), (2018) pp.75-89.

DOI: 10.1080/1478422x.2017.1384609

Google Scholar

[47] E.M. de Oliveira, M.B. Sormani, L.P. Hurtado, R.D. Polkowski, Potential use of graphene composites in epoxy resin as anticorrosive painting in automotive industry (No. 2023-36-0139). SAE Technical Paper (2024).

DOI: 10.4271/2023-36-0139

Google Scholar

[48] R. T. Loto, Effect of chloride concentration on the corrosion resistance of pure Zn metal in a 0.0626 M H2SO4 solution. Open Engineering, 13(1), 20220445 (2023).

Google Scholar

[49] G.F. Huseien, N.H.A. Khalid, J. Mirza, Nanotechnology for smart concrete. CRC Press (2022).

Google Scholar

[50] J.K. Craig, G.T. Kellison, S.M. Binion-Rock, S.D. Regan, M. Karnauskas, S.K. Lee, Ecosystem status report for the US South Atlantic region (2021).

Google Scholar

[51] Y. Zhang, D. Chen, S. Wang, L. Tian, A promising trend for field information collection: An air-ground multi-sensor monitoring system. Information processing in agriculture, 5(2), (2018) pp.224-233.

DOI: 10.1016/j.inpa.2018.02.002

Google Scholar

[52] C. Pan, Y. Cui, L. Liu, M. Guo, Z. Wang, Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment. Journal of Materials Engineering and Performance, 29, (2020) pp.1400-1409.

DOI: 10.1007/s11665-020-04649-5

Google Scholar

[53] B.G. Koushik, N. Van den Steen, M.H. Mamme, Y. Van Ingelgem, H. Terryn, Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. Journal of Materials Science & Technology, 62, (2021) pp.254-267.

DOI: 10.1016/j.jmst.2020.04.061

Google Scholar

[54] J. Li, B.V. Parakhonskiy, A.G. Skirtach, Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of 6 Bioscience Engineering, Ghent University, 9000 Ghent, Belgium 7.

DOI: 10.26420/annagriccropsci.2021.1103

Google Scholar

[55] S. Zehra, M. Mobin, J. Aslam, An overview of the corrosion chemistry. Environmentally Sustainable Corrosion Inhibitors, (2022) pp.3-23.

DOI: 10.1016/b978-0-323-85405-4.00012-4

Google Scholar

[56] X. Wang, L. Fan, K. Ding, L. Xu, W. Guo, J. Hou, T. Duan, Pitting corrosion of 2Cr13 stainless steel in deep-sea environment. Journal of Materials Science & Technology, 64, (2021) pp.187-194.

DOI: 10.1016/j.jmst.2020.04.036

Google Scholar

[57] H.M.H. Farh, M.E.A.B. Seghier, T. Zayed, A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis, 143, (2023) p.106885.

DOI: 10.1016/j.engfailanal.2022.106885

Google Scholar

[58] G. Vizentin, G. Vukelic, L. Murawski, N. Recho, J. Orovic, Marine propulsion system failures—A review. Journal of marine science and engineering, 8(9), (2020) p.662.

DOI: 10.3390/jmse8090662

Google Scholar

[59] Y. Hong, C. Sun, The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials–An overview. Theoretical and Applied Fracture Mechanics, 92, (2017) pp.331-350.

DOI: 10.1016/j.tafmec.2017.05.002

Google Scholar

[60] P.R. Roberge, Corrosion engineering: principles and practice (2008).

Google Scholar

[61] Z. Bai, S. Meng, S., Y. Cui, Y. Sun, L. Pei, H. Hu, Y. Jiang, H. Wang, A stable anticorrosion coating with multifunctional linkage against seawater corrosion. Composites Part B: Engineering, 259, (2023) p.110733.

DOI: 10.1016/j.compositesb.2023.110733

Google Scholar

[62] K. Ghosh, Foundations of Corrosion Science and Engineering. PHI Learning Pvt. Ltd (2024).

Google Scholar

[63] S.A. Farooq, A. Raina, M.I. Haq, A. Anand, Corrosion Behaviour of Engineering Materials: A Review of Mitigation Methodologies for Different Environments. Journal of The Institution of Engineers (India): Series D, 103(2), (2022) pp.639-661.

DOI: 10.1007/s40033-022-00367-5

Google Scholar

[64] M.V. Biezma, D. Agudo, 2020. Some strategies to learn corrosion in university: particular case of marine and maritime engineering students. In EDULEARN20 Proceedings (2022) pp.130-136.

DOI: 10.21125/edulearn.2020.0073

Google Scholar

[65] A.G. Braz, S.H. Pulcinelli, C.V. Santilli, Glycerol-based polyurethane-silica organic-inorganic hybrid as an anticorrosive coating. Progress in Organic Coatings, 169, (2022) p.106939.

DOI: 10.1016/j.porgcoat.2022.106939

Google Scholar

[66] H. Bahramnia, H. Mohammadian Semnani, A. Habibolahzadeh, H. Abdoos, H., Epoxy/polyurethane nanocomposite coatings for anti-erosion/wear applications: A review. Journal of Composite Materials, 54(22), (2020) pp.3189-3203.

DOI: 10.1177/0021998320908299

Google Scholar

[67] A. Cristoforetti, S. Rossi, F. Deflorian, M. Fedel, Recent progress in understanding filiform corrosion on organic coated steel: A comprehensive review. Progress in Organic Coatings, 192, (2024). p.108469.

DOI: 10.1016/j.porgcoat.2024.108469

Google Scholar

[68] R. Teijido, L. Ruiz-Rubio, A.G. Echaide, J.L. Vilas-Vilela, S. Lanceros-Mendez, Q. Zhang, State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anticorrosion and multi-functional applications. Progress in Organic Coatings, 163, (2020) p.106684.

DOI: 10.1016/j.porgcoat.2021.106684

Google Scholar

[69] S.K. Dhawan, H. Bhandari, G. Ruhi, B.M.S. Bisht, P. Sambyal,. Corrosion Preventive Materials and Corrosion Testing. CRC Press (2020).

DOI: 10.1201/9781315101217

Google Scholar

[70] H.S. Aljibori, A. Alamiery, A.A.H. Kadhum, Advances in corrosion protection coatings: A comprehensive review. Int. J. Corros. Scale Inhib, 12(4), (2023) pp.1476-1520.

DOI: 10.17675/2305-6894-2023-12-4-6

Google Scholar

[71] D.A. Shifler, Marine and Offshore Piping Systems. LaQue's Handbook of Marine Corrosion, (2022) pp.667-689.

DOI: 10.1002/9781119788867.ch24

Google Scholar

[72] U.K. Mudali, Materials for hostile corrosive environments. In Materials Under Extreme Conditions (2017) pp.91-128. Elsevier.

DOI: 10.1016/b978-0-12-801300-7.00003-6

Google Scholar

[73] N.H. Nguyen, B.C. Le, L.N. Nguyen, T.T. Bui, Technical analysis of the large capacity grid-connected floating photovoltaic system on the hydropower reservoir. Energies, 16(9), (2023) p.3780.

DOI: 10.3390/en16093780

Google Scholar

[74] R. Wu, Resilience Analysis for Water Distribution Networks. University of California, Berkeley (2022).

Google Scholar

[75] M. Abbas, M. Shafiee, An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, (2020) p.102718.

DOI: 10.1016/j.marstruc.2020.102718

Google Scholar

[76] H.M.H. Farh, M.E.A.B. Seghier, T. Zayed. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis, 143, (2023) p.106885.

DOI: 10.1016/j.engfailanal.2022.106885

Google Scholar

[77] S.R. Arunachalam, S.E.G. Dorman, R.T. Buckley, N.A. Conrad, S.A. Fawaz. Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys. International Journal of Fatigue, 111, (2018) pp.44-53.

DOI: 10.1016/j.ijfatigue.2018.02.005

Google Scholar

[78] B. Bobic, S. Mitrovic, M. Babic, I. Bobic. Corrosion of metal-matrix composites with aluminium alloy substrate. Tribology in industry (2010).

Google Scholar

[79] J.G. Kaufman, J.G. Corrosion of aluminum and aluminum alloys (2019).

Google Scholar

[80] P. Dhaiveegan, N. Elangovan, T. Nishimura, N. Rajendran. Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: field study. Rsc Advances, 6(53), (2016) pp.47314-47324.

DOI: 10.1039/c6ra04015b

Google Scholar

[81] S.J. Price, R.B. Figueira. Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings, 7(2), (2017) p.25.

DOI: 10.3390/coatings7020025

Google Scholar

[82] D. Wei, J. Wang, S. Li, D. Wang, Y. Liu, Y. A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chemical Engineering Journal, 475, (2023) p.146113.

DOI: 10.1016/j.cej.2023.146113

Google Scholar

[83] Q. Zeng, H. Zhou, J. Huang, Z. Guo. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 13(27), (2021) pp.11734-11764.

DOI: 10.1039/d1nr01936h

Google Scholar

[84] J. Ou. Superhydrophobic Coating-Recent Advances in Theory and Applications: Recent Advances in Theory and Applications (2024).

DOI: 10.5772/intechopen.111048

Google Scholar

[85] B.S. Liu, J.L. Li, W.J. Guo, P.F. Xu, S.H. Zhang, Y.Z. Zhang. Progress in corrosion-resistant coatings on surface of low alloy steel. Journal of Iron and Steel Research International, 30(2), (2023) pp.193-215.

DOI: 10.1007/s42243-022-00872-7

Google Scholar

[86] K. Yang, J. Tang, J. Huang, H. Zhang, H. Chen, Y. Xiong, R. Wang, C. Wu, M. Wang, H. Chen. Hydrophobic and Tribological Properties of Biomimetic Interfaces. Coatings, 14(5), (2024) p.529.

DOI: 10.3390/coatings14050529

Google Scholar

[87] Y. Yang, M.W. Urban, Self-healing polymeric materials. Chemical Society Reviews, 42(17), (2013) pp.7446-7467.

Google Scholar

[88] S.H. Joghee, N. Sunil, G. Selvaraj, K.M. Uthandi, B. Pullithadathil. Bio-Inspired Multifunctional Superhydrophobic Coatings for Corrosion Resistance. In A Treatise on Corrosion Science, Engineering and Technology (pp.559-575). Singapore: Springer Nature Singapore (2022).

DOI: 10.1007/978-981-16-9302-1_28

Google Scholar

[89] B.G. Koushik, N. Van den Steen, M.H. Mamme, Y. Van Ingelgem, H. Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. Journal of Materials Science & Technology, 62, (2021) pp.254-267.

DOI: 10.1016/j.jmst.2020.04.061

Google Scholar

[90] B. Gwinner, Nickel-based alloys for the oil and gas industry: Corrosion behavior in chloride-containing environments. Materials and Corrosion, 57(8), (2006).

Google Scholar

[91] Y.C. Sun, Corrosion prediction model for marine atmospheric corrosion of steel using artificial neural networks. Corrosion Science, 168, (2020) 108565.

Google Scholar

[92] A. Taheri, A review on marine corrosion management and mitigation strategies. Journal of Mrine Science and Engineering, 8(6). (2020). 414.

Google Scholar