[1]
Z.W. Zhong, Processes for environmentally friendly and/or cost-effective manufacturing. Materials and Manufacturing Processes, 36(9), (2021) pp.987-1009.
DOI: 10.1080/10426914.2021.1885709
Google Scholar
[2]
A. Taheri, A review on marine corrosion management and mitigation strategies. Journal of Marine Science and Engineering, 8(6). 414. (2020).
Google Scholar
[3]
P. Liu, H. Zhang, Y. Fan, D. Xu, Microbially influenced corrosion of steel in marine environments: A review from mechanisms to prevention. Microorganisms, 11(9), (2023) p.2299.
DOI: 10.3390/microorganisms11092299
Google Scholar
[4]
T. Tezdogan, Corrosion of materials in a marine environment. In marine tecbology and Engineering. CRC Press. (pp.115-140) 2014.
Google Scholar
[5]
O.A. Odunlami, O.S.I. Fayomi, S. Tijani, J.O. Fayomi, Chemical Adsorption Data's, Temperature Effect and Structural Properties of Artemether-Lumefantrine Corrosion Inhibition Properties on Structural Steel in 0.62 M NaCl. Key Engineering Materials, 886, (2021) pp.143-155.
DOI: 10.4028/www.scientific.net/kem.886.143
Google Scholar
[6]
M.A. Fajobi, O.S.I. Fayomi, G. Akande, O.A. Odunlami, O.O. Oluwole, Evaluation of the Inhibitive Effect of Ibuprofen Drug on the Acidic Corrosion of Aluminium 6063 Alloy. Key Engineering Materials, 886, (2021) pp.133-142.
DOI: 10.4028/www.scientific.net/kem.886.133
Google Scholar
[7]
O. A. Odunlami, Zea Mays Surfactant as Corrosion Inhibition of Copper and its Electrochemical Assessment in Hot Acidic Solution for Chemo-Mechanical Application. Vol 1050, (2022). pp.81-91.
DOI: 10.4028/www.scientific.net/msf.1050.81
Google Scholar
[8]
J.H. Chow. Passive Conservation in Archaeological Practice-The Design, Trial and Results of an Experiment with Marine Waterlogged Wood from the Mary Rose. The University of Manchester (United Kingdom) 2016.
Google Scholar
[9]
G. Chliveros, S.V. Kontomaris, A. Letsios. Automatic Identification of Corrosion in Marine Vessels Using Decision-Tree Imaging Hierarchies. Eng, 4(3), (2023) pp.2090-2099.
DOI: 10.3390/eng4030118
Google Scholar
[10]
R.W. Revie. Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons (2008).
Google Scholar
[11]
V. Vasagar, M.K. Hassan, A.M Abdullah, A.V. Karre, B. Chen, K. Kim, N. Al-Qahtani, T. Cai, Non-destructive techniques for corrosion detection: A review. Corrosion Engineering, Science and Technology, 59(1), (2024) pp.56-85.
DOI: 10.1177/1478422x241229621
Google Scholar
[12]
A. Shokri, M.S. Fard, Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies. Chemosphere, 307, (2022) p.135640.
DOI: 10.1016/j.chemosphere.2022.135640
Google Scholar
[13]
K. Popova, T. Prošek, 2022. Corrosion monitoring in atmospheric conditions: a review. Metals, 12(2), (2022) p.171.
DOI: 10.3390/met12020171
Google Scholar
[14]
G. A. Cragnolino, Corrosion fundamentals and characterization techniques. In Techniques for corrosion monitoring (pp.7-42). Woodhead Publishing (2021).
DOI: 10.1016/b978-0-08-103003-5.00002-3
Google Scholar
[15]
M. Elboudjaini, Pitting corrosion of aluminium alloy in chloride solutioon:Influence of anodic polarization. Materials Chemistry and Physics, 101(1), (2007). pp.37-44.
Google Scholar
[16]
D.M. Miller, R.S. Lillard, An investigation into the stages of alloy 625 crevice corrosion in an ocean water environment: initiation, propagation and repassivation in a remote crevice assembly. Journal of The Electrochemical Society, 166(11), (2019). pp.C3431.
DOI: 10.1149/2.0491911jes
Google Scholar
[17]
D.A. Shifler, Localized Corrosion. LaQue's Handbook of Marine Corrosion, (2022) pp.63-121.
Google Scholar
[18]
E. McCafferty, Surface chemistry of aqueous corrosion processes (p.96). Cham: Springer (2015).
Google Scholar
[19]
T. Bohackova, J. Ludvik, M. Kouril, Metallic material selection and prospective surface treatments for proton exchange membrane fuel cell bipolar plates—a review. Materials, 14(10), (2021) p.2682.
DOI: 10.3390/ma14102682
Google Scholar
[20]
J.O. Okeniyi, C10H18N2Na2O10 inhibition and adsorption mechanism on concrete steel-reinforcement corrosion in corrosive environments. Journal of the Association of Arab Universities for Basic and Applied Sciences, 20, (2016) pp.39-48.
DOI: 10.1016/j.jaubas.2014.08.004
Google Scholar
[21]
A. Habib, A.A. Houri, S. Al-Toubat, M.T. Junaid, Experimental Techniques for Testing the Properties of Construction Materials (2024).
DOI: 10.20944/preprints202405.1987.v1
Google Scholar
[22]
T. Zhao, T. Chen, Y. Wang, M. Wang, M. Bakir, M. Dahmen, W. Cai, C. Hong, T. Schopphoven, N. Pirch, M. Brucki, Laser directed energy deposition of an AlMgScZr-alloy in high-speed process regimes. Materials, 15(24), (2022) p.8951.
DOI: 10.3390/ma15248951
Google Scholar
[23]
A.J. Sedriks, Stress-corrosion cracking of stainless steels. In Stress-Corrosion Cracking: Materials Performance and Evaluation (pp.95-134). ASM International 2017.
DOI: 10.31399/asm.tb.sccmpe2.t55090095
Google Scholar
[24]
J.R. Scully, Effects of Stress–Environment Assisted Cracking. LaQue's Handbook of Marine Corrosion, (2022) pp.239-289.
DOI: 10.1002/9781119788867.ch10
Google Scholar
[25]
M.A. Kappes, Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review. Corrosion Reviews, 38(1), (2020) pp.1-24.
DOI: 10.1515/corrrev-2019-0061
Google Scholar
[26]
K.K. Maniam, S. Paul. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment. Corrosion and Materials Degradation, 2(2), (2021) pp.163-189.
DOI: 10.3390/cmd2020010
Google Scholar
[27]
A.K. Tripathi, P. Thakur, P. Saxena, S. Rauniyar, V. Gopalakrishnan, R.N. Singh, V. Gadhamshetty, E.Z. Gnimpieba, B.K. Jasthi, R.K. Sani. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Frontiers in microbiology, 12, (2021) p.754140.
DOI: 10.3389/fmicb.2021.754140
Google Scholar
[28]
L. Trutschel, Investigating the microbial ecology of a high pH serpentinizing system-Ney Springs (Doctoral dissertation, University of Cincinnati) 2023.
Google Scholar
[29]
D. Garrelfs, Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Applied and environmental microbiology, 80(4), (2014) pp.1226-1236.
DOI: 10.1128/aem.02848-13
Google Scholar
[30]
R.R. Elewa, O.S. Fayomi, O.O Joseph, Insight on the Dynamics of Corrosion and Anti-Corrosion Protection Progresses on Steel: A Brief Review. Journal of Bio-and Tribo-Corrosion, 10(3), (2024) p.51.
DOI: 10.1007/s40735-024-00857-x
Google Scholar
[31]
A.C. Santa, J.A. Tamayo, C.D. Correa, M.A. Gómez, J.G. Castaño, L.M. Baena,. Atmospheric corrosion maps as a tool for designing and maintaining building materials: A review. Heliyon, 8(9) (2022).
DOI: 10.1016/j.heliyon.2022.e10438
Google Scholar
[32]
A. Doménech-Carbó, M.T. Doménech-Carbó, Metallic Heritage: Electrochemistry of Metal Objects. In Electrochemistry for Cultural Heritage (pp.299-333). Cham: Springer International Publishing (2023).
DOI: 10.1007/978-3-031-31945-7_11
Google Scholar
[33]
C.G. Soares, T.A. Santos, eds., Advances in Maritime Technology and Engineering. CRC Press, Taylor & Francis Group (2024).
Google Scholar
[34]
T. Keerthipalli, R. Aepuru, A. Biswas, Review on precipitation, intermetallic and strengthening of aluminum alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237(6-7), (2023) pp.833-850.
DOI: 10.1177/09544054221111901
Google Scholar
[35]
K. Morshed-Behbahani, A. Nasiri, Corrosion response of steels fabricated through arc directed energy deposition additive manufacturing: a review. Materials Horizons (2024).
DOI: 10.1039/d4mh00226a
Google Scholar
[36]
P. Liu, H. Zhang, Y. Fan, D. Xu, Microbially influenced corrosion of steel in marine environments: A review from mechanisms to prevention. Microorganisms, 11(9), (2023) p.2299.
DOI: 10.3390/microorganisms11092299
Google Scholar
[37]
N. Hosseinzadeh, M. Ghiasian, E. Andiroglu, J. Lamere, L. Rhode-Barbarigos, J. Sobczak, K.S. Sealey, P. Suraneni, Concrete Seawalls: Load Considerations, Ecological Performance, Durability, and Recent Innovations (2021).
DOI: 10.31224/osf.io/h6zt8
Google Scholar
[38]
M. Kamaratou, S. Liakaki‐Stavropoulou K.D. Demadis. Multifunctional Additives for Synergistic Scale and Corrosion Inhibition in High‐Stress Systems. Industrial Scale Inhibition: Principles, Design, and Applications, (2024) pp.483-550.
DOI: 10.1002/9781394191208.ch22
Google Scholar
[39]
C.G. Soares, T.A. Santos, eds., Advances in Maritime Technology and Engineering. CRC Press, Taylor & Francis Group (2024).
Google Scholar
[40]
A. Yousefi Kanani, S. Green, X. Hou, J. Ye, Hybrid and adhesively bonded joints with dissimilar adherends: a critical review. Journal of Adhesion Science and Technology, 35(17), (2021) pp.1821-1859.
DOI: 10.1080/01694243.2020.1861859
Google Scholar
[41]
G.J. Lim, J. Cho, S. Bora, T. Biobaku, H. Parsaei, Models and computational algorithms for maritime risk analysis: a review. Annals of Operations Research, 271, (2018) pp.765-786.
DOI: 10.1007/s10479-018-2768-4
Google Scholar
[42]
Vukelić, G. and Vizentin, G., Common case studies of marine structural failures. Failure Analysis and Prevention. InTech, (2017) pp.135-51.
DOI: 10.5772/intechopen.72789
Google Scholar
[43]
M.H. Wood, A.V. Arellano, L. Van Wijk, Corrosion related accidents in petroleum refineries. European Commission Joint Research Centre, report no. EUR, 26331 (2013).
Google Scholar
[44]
C. Googan, Marine Corrosion and Cathodic Protection. CRC Press (2022).
Google Scholar
[45]
L. Xu, Y. Xin, L. Ma, H. Zhang, Z. Lin, X. Li, Challenges and solutions of cathodic protection for marine ships. Corrosion Communications, 2, (2021) pp.33-40.
DOI: 10.1016/j.corcom.2021.08.003
Google Scholar
[46]
N. Sridhar, R. Thodla, F. Gui, L. Cao, A. Anderko, Corrosion-resistant alloy testing and selection for oil and gas production. Corrosion Engineering, Science and Technology, 53(1_suppl), (2018) pp.75-89.
DOI: 10.1080/1478422x.2017.1384609
Google Scholar
[47]
E.M. de Oliveira, M.B. Sormani, L.P. Hurtado, R.D. Polkowski, Potential use of graphene composites in epoxy resin as anticorrosive painting in automotive industry (No. 2023-36-0139). SAE Technical Paper (2024).
DOI: 10.4271/2023-36-0139
Google Scholar
[48]
R. T. Loto, Effect of chloride concentration on the corrosion resistance of pure Zn metal in a 0.0626 M H2SO4 solution. Open Engineering, 13(1), 20220445 (2023).
Google Scholar
[49]
G.F. Huseien, N.H.A. Khalid, J. Mirza, Nanotechnology for smart concrete. CRC Press (2022).
Google Scholar
[50]
J.K. Craig, G.T. Kellison, S.M. Binion-Rock, S.D. Regan, M. Karnauskas, S.K. Lee, Ecosystem status report for the US South Atlantic region (2021).
Google Scholar
[51]
Y. Zhang, D. Chen, S. Wang, L. Tian, A promising trend for field information collection: An air-ground multi-sensor monitoring system. Information processing in agriculture, 5(2), (2018) pp.224-233.
DOI: 10.1016/j.inpa.2018.02.002
Google Scholar
[52]
C. Pan, Y. Cui, L. Liu, M. Guo, Z. Wang, Effect of temperature on corrosion behavior of low-alloy steel exposed to a simulated marine atmospheric environment. Journal of Materials Engineering and Performance, 29, (2020) pp.1400-1409.
DOI: 10.1007/s11665-020-04649-5
Google Scholar
[53]
B.G. Koushik, N. Van den Steen, M.H. Mamme, Y. Van Ingelgem, H. Terryn, Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. Journal of Materials Science & Technology, 62, (2021) pp.254-267.
DOI: 10.1016/j.jmst.2020.04.061
Google Scholar
[54]
J. Li, B.V. Parakhonskiy, A.G. Skirtach, Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of 6 Bioscience Engineering, Ghent University, 9000 Ghent, Belgium 7.
DOI: 10.26420/annagriccropsci.2021.1103
Google Scholar
[55]
S. Zehra, M. Mobin, J. Aslam, An overview of the corrosion chemistry. Environmentally Sustainable Corrosion Inhibitors, (2022) pp.3-23.
DOI: 10.1016/b978-0-323-85405-4.00012-4
Google Scholar
[56]
X. Wang, L. Fan, K. Ding, L. Xu, W. Guo, J. Hou, T. Duan, Pitting corrosion of 2Cr13 stainless steel in deep-sea environment. Journal of Materials Science & Technology, 64, (2021) pp.187-194.
DOI: 10.1016/j.jmst.2020.04.036
Google Scholar
[57]
H.M.H. Farh, M.E.A.B. Seghier, T. Zayed, A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis, 143, (2023) p.106885.
DOI: 10.1016/j.engfailanal.2022.106885
Google Scholar
[58]
G. Vizentin, G. Vukelic, L. Murawski, N. Recho, J. Orovic, Marine propulsion system failures—A review. Journal of marine science and engineering, 8(9), (2020) p.662.
DOI: 10.3390/jmse8090662
Google Scholar
[59]
Y. Hong, C. Sun, The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials–An overview. Theoretical and Applied Fracture Mechanics, 92, (2017) pp.331-350.
DOI: 10.1016/j.tafmec.2017.05.002
Google Scholar
[60]
P.R. Roberge, Corrosion engineering: principles and practice (2008).
Google Scholar
[61]
Z. Bai, S. Meng, S., Y. Cui, Y. Sun, L. Pei, H. Hu, Y. Jiang, H. Wang, A stable anticorrosion coating with multifunctional linkage against seawater corrosion. Composites Part B: Engineering, 259, (2023) p.110733.
DOI: 10.1016/j.compositesb.2023.110733
Google Scholar
[62]
K. Ghosh, Foundations of Corrosion Science and Engineering. PHI Learning Pvt. Ltd (2024).
Google Scholar
[63]
S.A. Farooq, A. Raina, M.I. Haq, A. Anand, Corrosion Behaviour of Engineering Materials: A Review of Mitigation Methodologies for Different Environments. Journal of The Institution of Engineers (India): Series D, 103(2), (2022) pp.639-661.
DOI: 10.1007/s40033-022-00367-5
Google Scholar
[64]
M.V. Biezma, D. Agudo, 2020. Some strategies to learn corrosion in university: particular case of marine and maritime engineering students. In EDULEARN20 Proceedings (2022) pp.130-136.
DOI: 10.21125/edulearn.2020.0073
Google Scholar
[65]
A.G. Braz, S.H. Pulcinelli, C.V. Santilli, Glycerol-based polyurethane-silica organic-inorganic hybrid as an anticorrosive coating. Progress in Organic Coatings, 169, (2022) p.106939.
DOI: 10.1016/j.porgcoat.2022.106939
Google Scholar
[66]
H. Bahramnia, H. Mohammadian Semnani, A. Habibolahzadeh, H. Abdoos, H., Epoxy/polyurethane nanocomposite coatings for anti-erosion/wear applications: A review. Journal of Composite Materials, 54(22), (2020) pp.3189-3203.
DOI: 10.1177/0021998320908299
Google Scholar
[67]
A. Cristoforetti, S. Rossi, F. Deflorian, M. Fedel, Recent progress in understanding filiform corrosion on organic coated steel: A comprehensive review. Progress in Organic Coatings, 192, (2024). p.108469.
DOI: 10.1016/j.porgcoat.2024.108469
Google Scholar
[68]
R. Teijido, L. Ruiz-Rubio, A.G. Echaide, J.L. Vilas-Vilela, S. Lanceros-Mendez, Q. Zhang, State of the art and current trends on layered inorganic-polymer nanocomposite coatings for anticorrosion and multi-functional applications. Progress in Organic Coatings, 163, (2020) p.106684.
DOI: 10.1016/j.porgcoat.2021.106684
Google Scholar
[69]
S.K. Dhawan, H. Bhandari, G. Ruhi, B.M.S. Bisht, P. Sambyal,. Corrosion Preventive Materials and Corrosion Testing. CRC Press (2020).
DOI: 10.1201/9781315101217
Google Scholar
[70]
H.S. Aljibori, A. Alamiery, A.A.H. Kadhum, Advances in corrosion protection coatings: A comprehensive review. Int. J. Corros. Scale Inhib, 12(4), (2023) pp.1476-1520.
DOI: 10.17675/2305-6894-2023-12-4-6
Google Scholar
[71]
D.A. Shifler, Marine and Offshore Piping Systems. LaQue's Handbook of Marine Corrosion, (2022) pp.667-689.
DOI: 10.1002/9781119788867.ch24
Google Scholar
[72]
U.K. Mudali, Materials for hostile corrosive environments. In Materials Under Extreme Conditions (2017) pp.91-128. Elsevier.
DOI: 10.1016/b978-0-12-801300-7.00003-6
Google Scholar
[73]
N.H. Nguyen, B.C. Le, L.N. Nguyen, T.T. Bui, Technical analysis of the large capacity grid-connected floating photovoltaic system on the hydropower reservoir. Energies, 16(9), (2023) p.3780.
DOI: 10.3390/en16093780
Google Scholar
[74]
R. Wu, Resilience Analysis for Water Distribution Networks. University of California, Berkeley (2022).
Google Scholar
[75]
M. Abbas, M. Shafiee, An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, (2020) p.102718.
DOI: 10.1016/j.marstruc.2020.102718
Google Scholar
[76]
H.M.H. Farh, M.E.A.B. Seghier, T. Zayed. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis, 143, (2023) p.106885.
DOI: 10.1016/j.engfailanal.2022.106885
Google Scholar
[77]
S.R. Arunachalam, S.E.G. Dorman, R.T. Buckley, N.A. Conrad, S.A. Fawaz. Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys. International Journal of Fatigue, 111, (2018) pp.44-53.
DOI: 10.1016/j.ijfatigue.2018.02.005
Google Scholar
[78]
B. Bobic, S. Mitrovic, M. Babic, I. Bobic. Corrosion of metal-matrix composites with aluminium alloy substrate. Tribology in industry (2010).
Google Scholar
[79]
J.G. Kaufman, J.G. Corrosion of aluminum and aluminum alloys (2019).
Google Scholar
[80]
P. Dhaiveegan, N. Elangovan, T. Nishimura, N. Rajendran. Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: field study. Rsc Advances, 6(53), (2016) pp.47314-47324.
DOI: 10.1039/c6ra04015b
Google Scholar
[81]
S.J. Price, R.B. Figueira. Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings, 7(2), (2017) p.25.
DOI: 10.3390/coatings7020025
Google Scholar
[82]
D. Wei, J. Wang, S. Li, D. Wang, Y. Liu, Y. A non-fluorinated, in-situ self-healing electrothermal/superhydrophobic coating on Mg alloy for anti-icing and anti-corrosion. Chemical Engineering Journal, 475, (2023) p.146113.
DOI: 10.1016/j.cej.2023.146113
Google Scholar
[83]
Q. Zeng, H. Zhou, J. Huang, Z. Guo. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 13(27), (2021) pp.11734-11764.
DOI: 10.1039/d1nr01936h
Google Scholar
[84]
J. Ou. Superhydrophobic Coating-Recent Advances in Theory and Applications: Recent Advances in Theory and Applications (2024).
DOI: 10.5772/intechopen.111048
Google Scholar
[85]
B.S. Liu, J.L. Li, W.J. Guo, P.F. Xu, S.H. Zhang, Y.Z. Zhang. Progress in corrosion-resistant coatings on surface of low alloy steel. Journal of Iron and Steel Research International, 30(2), (2023) pp.193-215.
DOI: 10.1007/s42243-022-00872-7
Google Scholar
[86]
K. Yang, J. Tang, J. Huang, H. Zhang, H. Chen, Y. Xiong, R. Wang, C. Wu, M. Wang, H. Chen. Hydrophobic and Tribological Properties of Biomimetic Interfaces. Coatings, 14(5), (2024) p.529.
DOI: 10.3390/coatings14050529
Google Scholar
[87]
Y. Yang, M.W. Urban, Self-healing polymeric materials. Chemical Society Reviews, 42(17), (2013) pp.7446-7467.
Google Scholar
[88]
S.H. Joghee, N. Sunil, G. Selvaraj, K.M. Uthandi, B. Pullithadathil. Bio-Inspired Multifunctional Superhydrophobic Coatings for Corrosion Resistance. In A Treatise on Corrosion Science, Engineering and Technology (pp.559-575). Singapore: Springer Nature Singapore (2022).
DOI: 10.1007/978-981-16-9302-1_28
Google Scholar
[89]
B.G. Koushik, N. Van den Steen, M.H. Mamme, Y. Van Ingelgem, H. Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. Journal of Materials Science & Technology, 62, (2021) pp.254-267.
DOI: 10.1016/j.jmst.2020.04.061
Google Scholar
[90]
B. Gwinner, Nickel-based alloys for the oil and gas industry: Corrosion behavior in chloride-containing environments. Materials and Corrosion, 57(8), (2006).
Google Scholar
[91]
Y.C. Sun, Corrosion prediction model for marine atmospheric corrosion of steel using artificial neural networks. Corrosion Science, 168, (2020) 108565.
Google Scholar
[92]
A. Taheri, A review on marine corrosion management and mitigation strategies. Journal of Mrine Science and Engineering, 8(6). (2020). 414.
Google Scholar