[1]
Yan, T. F., Wang, G. Z., Wang, K., Xuan, F. Z., and Tu, S. T. (2021). Limit loads of dissimilar metal welded joints for joining safe end to pipe-nozzle of nuclear pressure vessel. International Journal of Pressure Vessels and Piping, 194, 104554.
DOI: 10.1016/j.ijpvp.2021.104554
Google Scholar
[2]
Murthy, A. R., Gandhi, P., Vishnuvardhan, S., and Sudharshan, G. (2020). Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading. Nuclear Engineering and Technology, 52(12), 2949–2957.
DOI: 10.1016/j.net.2020.06.001
Google Scholar
[3]
Dev, S., Ramkumar, K. D., Arivazhagan, N., and Rajendran, R. (2018). Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. Journal of Manufacturing Processes, 32, 685–698.
DOI: 10.1016/j.jmapro.2018.03.035
Google Scholar
[4]
Corleto, C. R., and Argade, G. R. (2017). Failure analysis of dissimilar weld in heat exchanger. Case Studies in Engineering Failure Analysis, 9, 27–34.
DOI: 10.1016/j.csefa.2017.05.003
Google Scholar
[5]
Sirohi, S., Kumar, A., Pandey, S. M., Purohit, P., Fydrych, D., Kumar, S., and Pandey, C. (2023). Dissimilar autogenous TIG joint of Alloy 617 and AISI 304H steel for AUSC application. Heliyon, 9(9), e19945.
DOI: 10.1016/j.heliyon.2023.e19945
Google Scholar
[6]
Seo, W. G., Suh, J. Y., Shim, J. H., Lee, H., Yoo, K., and Choi, S. H. (2020). Effect of post-weld heat treat ment on the microstructure and hardness of P92 steel in IN740H/P92 dissimilar weld joints. Materials Characterization, 160:110083.
DOI: 10.1016/j.matchar.2019.110083
Google Scholar
[7]
Wen, J. B., Zhou, C. Y., Li, X., Pan, X. M., Chang, L., Zhang, G. D., Xue, F., and Zhao, Y. F. (2019). Effect of temperature range on thermal-mechanical fatigue properties of P92 steel and fatigue life prediction with a new cyclic softening model. International Journal of Fatigue, 129, 105226.
DOI: 10.1016/j.ijfatigue.2019.105226
Google Scholar
[8]
Abe, F. (2016). Progress in creep-resistant steels for high efficiency coal-fired power plants. Journal of Pressure Vessel Technology, 138(4), 040804.
DOI: 10.1115/1.4032372
Google Scholar
[9]
Maziasz, P. J. (2018). Development of creep-resistant and oxidation-resistant austenitic stainless steels for high temperature applications. JOM, 70(1), 66–75.
DOI: 10.1007/s11837-017-2642-x
Google Scholar
[10]
Dak, G., Singh, V., Kumar, A., Sirohi, S., Bhattacharyya, A., Pandey, C., and Pandey, S. M. (2023). Microstructure and mechanical behavior study of the dissimilar weldment of'IN82 buttered'P92 steel and AISI 304L steel for ultra-super critical power plants. Materials Today Communications, 37, 107552.
DOI: 10.1016/j.mtcomm.2023.107552
Google Scholar
[11]
Dak, G., Sirohi, S., and Pandey, C. (2022). Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. International Journal of Pressure Vessels and Piping, 196, 104629.
DOI: 10.1016/j.ijpvp.2022.104629
Google Scholar
[12]
Kim, M. Y., Kwak, S. C., Choi, I. S., Lee, Y. K., Suh, J. Y., Fleury, E., Jung, W. S., and Son, T. H. (2014). High-temperature tensile and creep deformation of cross-weld specimens of weld joint between T92 martensitic and Super304H austenitic steels. Materials Characterization, 97, 161–168.
DOI: 10.1016/j.matchar.2014.09.011
Google Scholar
[13]
Liang, Z., Zhao, Q., Deng, J., and Wang, Y. (2018). Influence of Aging treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds. Materials at High Temperatures, 35(4), 327–334.
DOI: 10.1080/09603409.2017.1334857
Google Scholar
[14]
Deng, J., Liang, Z., Hui, S. E., and Zhao, Q. (2015). Aging treatment on the microstructures and mechanical properties of new groove T92/Super 304H dissimilar steel joints. High Temperature Materials and Processes, 34(5), 425–433.
DOI: 10.1515/htmp-2014-0067
Google Scholar
[15]
Kumar, R., Varma, A., Kumar, Y. R., Neelakantan, S., and Jain, J. (2022). Enhancement of mechanical properties through modified post-weld heat treatment processes of T91 and Super304H dissimilar welded joint. Journal of Manufacturing Processes, 78, 59-70.
DOI: 10.1016/j.jmapro.2022.04.008
Google Scholar
[16]
Sirohi, S., Pandey, C., and Goyal, A. (2021). Role of the Ni-based filler (IN625) and heat-treatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel. Journal of Manufacturing Processes, 65, 174-189.
DOI: 10.1016/j.jmapro.2021.03.029
Google Scholar
[17]
Thakare, J. G., Pandey, C., Mahapatra, M. M., and Mulik, R. S. (2019). An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel. Journal of Manufacturing Processes, 48, 249-259.
DOI: 10.1016/j.jmapro.2019.10.002
Google Scholar
[18]
Rogalski, G., Świerczyńska, A., Landowski, M., and Fydrych, D. (2020). Mechanical and Microstructural Characterization of TIG Welded Dissimilar Joints between 304L Austenitic Stainless Steel and Incoloy 800HT Nickel Alloy. Metals, 10, 559.
DOI: 10.3390/met10050559
Google Scholar
[19]
Adomako, N. K., Park, H. J., Cha, S. C., Lee, M., & Kim, J. H. (2021). Microstructure evolution and mechanical properties of the dissimilar joint between IN718 and STS304. Materials Science and Engineering: A, 799, 140262.
DOI: 10.1016/j.msea.2020.140262
Google Scholar
[20]
Shim, J. H., Povoden-Karadeniz, E., Kozeschnik, E., and Wirth, B. D. (2015). Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation. Journal of Nuclear Materials, 462, 250–257.
DOI: 10.1016/j.jnucmat.2015.04.013
Google Scholar
[21]
Was, G. S., and Ukai, S. (2019). Austenitic stainless steels. In Structural alloys for nuclear energy applications (p.293–347). Elsevier.
DOI: 10.1016/b978-0-12-397046-6.00008-3
Google Scholar
[22]
Gope, D. K., and Chattopadhyaya, S. (2022). Dissimilar welding of nickel-based superalloy with stainless steel: Influence of post weld heat treatment. Materials and Manufacturing Processes, 37(2), 136–142.
DOI: 10.1080/10426914.2021.1945095
Google Scholar
[23]
Kulkarni, A., Dwivedi, D. K., and Vasudevan, M. (2020). Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint. Materials Science and Engineering, 790, 139685.
DOI: 10.1016/j.msea.2020.139685
Google Scholar
[24]
Kulkarni, A., Dwivedi, D. K., and Vasudevan, M. (2019). Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. Journal of Materials Processing Technology, 274, 116280.
DOI: 10.1016/j.jmatprotec.2019.116280
Google Scholar
[25]
Kourdani, A., and Derakhshandeh-Haghighi, R. (2018). Evaluating the properties of dissimilar metal welding between Inconel 625 and 316L stainless steel by applying different welding methods and consumables. Metallurgical and Materials Transactions A, 49(4), 1231–1243.
DOI: 10.1007/s11661-018-4469-7
Google Scholar
[26]
Ramkumar, T., Selvakumar, M., Narayanasamy, P., Begam, A. A., Mathavan, P., and Raj, A. A. (2017). Studies on the structural property mechanical relationships and corrosion behaviour of Inconel 718 and SS 316L dissimilar joints by TIG welding without using activated flux. Journal of Manufacturing Processes, 30, 290–298.
DOI: 10.1016/j.jmapro.2017.09.028
Google Scholar
[27]
Vidyarthy, R. S., Kulkarni, A., and Dwivedi, D. K. (2017). Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Materials Science and Engineering: A, 695, 249-257. Petroleum Institute.
DOI: 10.1016/j.msea.2017.04.038
Google Scholar
[28]
Gao, X., Shao, Y., Xie, L., and Yang, D. (2020). Behavior of API 5-L X56 submarine pipes under transverse impact. Ocean Engineering, 206, 107337.
DOI: 10.1016/j.oceaneng.2020.107337
Google Scholar
[29]
Sharma, S. K., and Maheshwari, S. (2017). A review on welding of high strength oil and gas pipeline steels. Journal of Natural Gas Science and Engineering, 38, 203–217.
DOI: 10.1016/j.jngse.2016.12.039
Google Scholar
[30]
Ramesh, A. P., Subramaniyan, M., and Eswaran, P. (2019). Review on friction welding of similar/dissimilar metals. Journal of Physics: Conference Series, 1362(012032), 1–16.
DOI: 10.1088/1742-6596/1362/1/012032
Google Scholar
[31]
Shi, H., Chen, K., Liang, Z., Dong, F., Yu, T., Dong, X., Zhang, L., and Shan, A. (2017). Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints. Journal of Materials Science and Technology, 33(4), 359–366.
DOI: 10.1016/j.jmst.2016.05.006
Google Scholar
[32]
Kicukov, E., and Gursel, A. (2015). Ultrasonic welding of dissimilar materials: A review. Periodicals of Engineering and Natural Sciences, 3(1), 28–36.
DOI: 10.21533/pen.v3i1.44
Google Scholar
[33]
Maliutina, I. N., Mali, V. I., Bataev, I. A., Bataev, A. A., Esikov, M. A., Smirnov, A. I., and Skorokhod, K. A. (2014). Structure and microhardness of Cu-Ta joints produced by explosive welding. Rivista Italiana Della Saldatura, 66(5), 839–848
DOI: 10.1155/2013/256758
Google Scholar
[34]
Afriansyah, A.A. (2020). Dissimilar metal welding using shielded metal arc welding: A review. Technology Reports of Kansai University, 62(4), 1935–1948.
Google Scholar
[35]
Abioye, T. E., Olugbade, T. O., and Ogedengbe, T. I. (2017). Welding of dissimilar metals using gas metal arc and laser welding techniques: A review. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 8(6), 225–228.
Google Scholar
[36]
Munteanu, A. (2016). The electron beam welding of dissimilar materials-case study. IOP Conference Series: Materials Science and Engineering, 161.
DOI: 10.1088/1757-899x/161/1/012058
Google Scholar
[37]
Wang, P., Chen, X., Pan, Q., Madigan, B., and Long, J. (2016). Laser welding dissimilar materials of aluminum to steel: An overview. International Journal of Advanced Manufacturing Technology, 87(9–12), 3081–3090.
DOI: 10.1007/s00170-016-8725-y
Google Scholar
[38]
Rudrapati, R., Kumar, R., Pal, P.K., and Nandi, G. (2016). Parametric optimization of submerged arc welding of dissimilar mild steel and ferritic stainless steels using Taguchi method. International Journal of Advances in Production and Mechanical Engineering,2,1-31.
DOI: 10.1016/j.matpr.2017.02.068
Google Scholar
[39]
Antonini, J. M. (2014). Health effects associated with welding. In Comprehensive Materials Processing. Reference Module in Material Science and Materials. Engineering, 8, 49–70.
DOI: 10.1016/b978-0-08-096532-1.00807-4
Google Scholar
[40]
Nivas, R., Singh, P. K., Das, G., Das, S. K., Kumar, S., Mahato, B., Sivaprasad, K., and Ghosh, M. (2017). A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding. Journal of Manufacturing Processes, 25, 274–283.
DOI: 10.1016/j.jmapro.2016.12.004
Google Scholar
[41]
Mittal, R., and Sidhu, B. S. (2015). Microstructures and mechanical properties of dissimilar T91/347H steel weldments. Journal of Materials Processing Technology, 220, 76–86.
DOI: 10.1016/j.jmatprotec.2015.01.008
Google Scholar
[42]
Khan, W. N., and Chhibber, R. (2021). Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld. Materials Science and Engineering, 803, 140476.
DOI: 10.1016/j.msea.2020.140476
Google Scholar
[43]
Khan, M., Dewan, M. W., and Sarkar, M. Z. (2021). Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint. Journal of Manufacturing Processes, 64, 1307–1321.
DOI: 10.1016/j.jmapro.2021.02.058
Google Scholar
[44]
ASME. (2012). B31.3, Process piping pp.10016-5990. American Society of Mechanical Engineers.
Google Scholar
[45]
ASME, and Section, IX. (2011). Rules for construction of power boilers pp.10016-5990. American Society of Mechanical Engineers.
Google Scholar
[46]
Amuda, M. O. H., Osoba, L. O., Etuk, N. N., Lawal, T. F., and Adetayo, A. O. (2020). Tracking local brittle zone in the heat affected zone of girth-welded API 5L X46 pipe. Nigerian Journal of Technology, 39(2), 403–416.
DOI: 10.4314/njt.v39i2.10
Google Scholar
[47]
ASTM International. (2016). Standard test methods for tension testing of metallic materials. Committee E-28 on mechanical testing. Journal of ASTM International.
Google Scholar
[48]
API, S. T. D. 1104. (2013). Welding of pipelines and related facilities (21st ed). American
Google Scholar
[49]
Shao, Y., Liu, C., Yan, Z., Li, H., and Liu, Y. (2018). Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. Journal of Materials Science & Technology, 34(5), 737-744.
DOI: 10.1016/j.jmst.2017.11.020
Google Scholar
[50]
Tasalloti, H., Kah, P., and Martikainen, J. (2017). Effect of heat input on dissimilar welds of ultrahigh strength steel and duplex stainless steel: Microstructural and compositional analysis. Materials Characterization, 123, 29–41.
DOI: 10.1016/j.matchar.2016.11.014
Google Scholar
[51]
Wang, J., Lu, M. X., Zhang, L., Chang, W., Xu, L. N., and Hu, L. H. (2012). Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. International Journal of Minerals, Metallurgy, and Materials, 19(6), 518–524.
DOI: 10.1007/s12613-012-0589-z
Google Scholar
[52]
Shojaati, M., and Beidokhti, B. (2017). Characterization of AISI 304/AISI 409 stainless steel joints using different filler materials. Construction and Building Materials, 147, 608–615.
DOI: 10.1016/j.conbuildmat.2017.04.185
Google Scholar
[53]
Verma, J., Taiwade, R.V., Khatirkar, R.K., and Kumar, A. (2016). A comparative study on the effect of electrode on microstructure and mechanical properties of dissimilar welds of 2205 austeno-ferritic and 316L austenitic stainless steel. Materials Transactions, 57(4), 494-500.
DOI: 10.2320/matertrans.m2015321
Google Scholar
[54]
Anaele, J. U., Onyemaobi, O. O., Nwobodo, C. S., and Ugwuegbu, C. C. (2015). Effect of electrode types on the solidification cracking susceptibility of austenitic stainless steel weld metal. International Journal of Metals, 1–7.
DOI: 10.1155/2015/213258
Google Scholar
[55]
Pouraliakbar, H., Hamedi, M., Kokabi, A. H., and Nazari, A. (2014). Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds. Materials Research, 17(1), 106–114.
DOI: 10.1590/s1516-14392013005000170
Google Scholar
[56]
Nelson, T.W., Lippold, J.C. and Mills, M.J. (2000). Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds. Part 2: On-cooling transformations. Welding Journal, 79(55): 267s-277s
Google Scholar
[57]
Sadeghian, M., Shamanian, M. and Shafyei, A. (2014) Effect of heat input microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Materials and Design, 60, 678-684.
DOI: 10.1016/j.matdes.2014.03.057
Google Scholar
[58]
Saedi, A. H., Hajjari, E., and Sadrossadat, S. M. (2018). Microstructural characterization and mechanical properties of TIG-Welded API 5L X60 HSLA steel and AISI 310S stainless steel dissimilar joints. Metallurgical and Materials Transactions A, 49(11), 5497–5508.
DOI: 10.1007/s11661-018-4890-y
Google Scholar
[59]
Weman, K. (2011). Welding processes handbook. Elsevier.
Google Scholar