[1]
M. E.-S. M. EL-Bedawy, "Effect of Aging on the Corrosion of Aluminum Alloy 6061," p.1–89, 2010.
Google Scholar
[2]
S. Somalina Panda, "Aluminum Alloys in Automotive Application," 2015.
Google Scholar
[3]
A. A. Adebisi, M. A. Maleque, and M. M. Rahman, "Metal Matrix Composite Brake Rotor: Historical Development And Product Life Cycle Analysis," Foreign Policy, vol. 4, no. 175, p.14–15, 2009.
DOI: 10.15282/ijame.4.2011.8.0038
Google Scholar
[4]
H. Kala, K. K. S. Mer, and S. Kumar, "A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites.," Procedia Mater. Sci., vol. 6, no. Icmpc, p.1951–1960, 2014.
DOI: 10.1016/j.mspro.2014.07.229
Google Scholar
[5]
A. V. Skazochkin, G. G. Bondarenko, and P. Żukowski, "Research of Surface Wear Resistance of Aluminum Alloy Modified with Minerals using Sclerometry Method," Devices Methods Meas., vol. 10, no. 3, p.263–270, 2019.
DOI: 10.21122/2220-9506-2019-10-3-263-270
Google Scholar
[6]
F. Khodabakhshi, A. Simchi, and A. H. Kokabi, "Surface modifications of an aluminum-magnesium alloy through reactive stir friction processing with titanium oxide nanoparticles for enhanced sliding wear resistance," Surf. Coatings Technol., vol. 309, p.114–123, 2017.
DOI: 10.1016/j.surfcoat.2016.11.060
Google Scholar
[7]
Alaneme and M. Bodunrin, "Corrosion Behavior of Alumina Reinforced Aluminium ( 6063 ) Metal Matrix Corrosion Behavior of Alumina Reinforced Aluminium ( 6063 ) Metal Matrix Composites," no. November 2014, 2011.
DOI: 10.4236/jmmce.2011.1012088
Google Scholar
[8]
S. Senthil, M. Raguraman, and D. T. Manalan, "Manufacturing processes & recent applications of aluminium metal matrix composite materials: A review," Materials Today: Proceedings, vol. 45. p.5934–5938, 2020.
DOI: 10.1016/j.matpr.2020.08.792
Google Scholar
[9]
C. Zhang et al., "Microstructure and mechanical properties of aluminum matrix composites reinforced with pre-oxidized β-Si3N4 whiskers," Mater. Sci. Eng. A, vol. 723, no. January, p.109–117, 2018.
DOI: 10.1016/j.msea.2018.03.038
Google Scholar
[10]
H. I. Akbar, E. Surojo, and D. Ariawan, "Investigation of industrial and agro wastes for aluminum matrix composite reinforcement," Procedia Struct. Integr., vol. 27, no. 2019, p.30–37, 2020.
DOI: 10.1016/j.prostr.2020.07.005
Google Scholar
[11]
S. D. Saravanan and M. S. Kumar, "Effect of mechanical properties on rice husk ash reinforced aluminum alloy (AlSi10Mg) matrix composites," Procedia Eng., vol. 64, p.1505–1513, 2013.
DOI: 10.1016/j.proeng.2013.09.232
Google Scholar
[12]
O. O. Joseph and K. O. Babaremu, "Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): A review," Fibers, vol. 7, no. 4, 2019.
DOI: 10.3390/fib7040033
Google Scholar
[13]
J. Singh and A. Chauhan, "Characterization of hybrid aluminum matrix composites for advanced applications - A review," Journal of Materials Research and Technology, vol. 5, no. 2. p.159–169, 2016.
DOI: 10.1016/j.jmrt.2015.05.004
Google Scholar
[14]
U. S. Ikele, K. K. Alaneme, and A. Oyetunji, "Mechanical behaviour of stir cast aluminum matrix composites reinforced with silicon carbide and palm kernel shell ash," Manuf. Rev., vol. 9, p.12, 2022.
DOI: 10.1051/mfreview/2022011
Google Scholar
[15]
F. O. Edoziuno, C. C. Nwaeju, A. A. Adediran, B. U. Odoni, and V. R. A. Prakash, "Mechanical and microstructural characteristics of aluminium 6063 alloy/palm kernel shell composites for lightweight applications," Sci. African, vol. 12, p. e00781, 2021.
DOI: 10.1016/j.sciaf.2021.e00781
Google Scholar
[16]
A. Seshappa, N. Hiranmai, B. Subbaratnam, K. P. Raj, B. Sravya, and A. K. Singla, "Fabrication and characterization of sic, tio2, and pksa hybrid aluminum-based metal matrix composites," in MATEC Web of Conferences, 2024, vol. 392, p.1023.
DOI: 10.1051/matecconf/202439201023
Google Scholar
[17]
R. T. Loto, C. A. Loto, J. Okeniyi, and G. Olanrewaju, "Statistical analysis of the corrosion inhibition performance of three inorganic compounds on mild steel acid media," in Journal of Physics: Conference Series, 2022, vol. 2321, no. 1, p.12011.
DOI: 10.1088/1742-6596/2321/1/012011
Google Scholar
[18]
O. A. Omotosho, J. O. Okeniyi, and J. O. Ikotun, "Corrosion behaviour of mild steel in 0.5 M sulphuric acid," J. Eng. Appl. Sci., vol. 13, no. 14, p.5789–5795, 2018.
Google Scholar
[19]
O. O. Joseph, J. O. Dirisu, J. Atiba, S. Ante, and J. A. Ajayi, "Mechanical, and corrosive properties of AA7075 aluminium reinforced with rice husk ash particulates," Mater. Res. Express, vol. 10, no. 11, p.116520, 2023.
DOI: 10.1088/2053-1591/ad0dd3
Google Scholar
[20]
F. O. Edoziuno, C. C. Nwaeju, A. A. Adediran, B. U. Odoni, and V. R. Arun Prakash, "Mechanical and microstructural characteristics of Aluminium 6063 Alloy/Palm Kernel shell composites for lightweight applications," Sci. African, vol. 12, p. e00781, 2021.
DOI: 10.1016/j.sciaf.2021.e00781
Google Scholar
[21]
I. O. Oladele and A. M. Okoro, "The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites," Leonardo J. Sci, vol. 28, p.15–30, 2016.
Google Scholar
[22]
O. M. Ikumapayi, E. T. Akinlabi, O. O. Abegunde, and O. S. I. Fayomi, "Electrochemical investigation of calcined agrowastes powders on friction stir processing of aluminium-based matrix composites," Mater. Today Proc., vol. 26, p.3238–3245, 2020.
DOI: 10.1016/j.matpr.2020.02.906
Google Scholar