[1]
R.A. Higgins, Engineering metallurgy, Applied Physical Metallurgy, 5th., Vol. 1, 1993, p.474.
Google Scholar
[2]
D.M. Jyotsna, Development of wear-resistant composite surface on mild steel by laser surface alloying with silicon and reactive melting, Mater. Lett. 62 (2008) 4257-4259.
DOI: 10.1016/j.matlet.2008.06.042
Google Scholar
[3]
A.G. Nasibov, L.V. Popova, N.L. Karchevskaya, Means for increasing the toughness and strength of low-carbon steel, Met. Sci. Heat Treat. 29 (1987) 483-486.
DOI: 10.1007/bf01167729
Google Scholar
[4]
G.A.G. Pedroza, C.A.C. De Souza, I.A. Carlos, L.R.P. Andrade Lima, Evaluation of the effect of deposition bath glycerol content on zinc–nickel electrodeposits on carbon steel, Surf. Coat. Tech. 206 (2012) 2927-2932.
DOI: 10.1016/j.surfcoat.2011.12.024
Google Scholar
[5]
K.P. Rao, A.V. Sreenu, H.K. Rafi, M.N. Libin, K. Balasubramaniam, Tool steel and copper coatings by friction surfacing - A thermography study, J. Mater. Process. Technol. 212 (2012) 402-407.
DOI: 10.1016/j.jmatprotec.2011.09.023
Google Scholar
[6]
J. Gandra, R.M. Miranda, P. Vilaca, H. Krohn, M. Beyer, J.F. Dos Santos, Friction Surfacing - a review, J. Mater. Process. Technol.214 (2014) 1062-1093.
DOI: 10.1016/j.jmatprotec.2013.12.008
Google Scholar
[7]
A. Heidarpour, M.A. Bradford, K.A.M. Othman, Thermoelastic flexural-torsional buckling of steel arches, J. Constr. Steel Res. 67 (2011) 1806-1820.
DOI: 10.1016/j.jcsr.2011.05.005
Google Scholar
[8]
R.E. Ali, M.G. Milica, Z.J. Branimir, N. Branimir, N. The influence of thin benzoate-doped polyaniline coatings on corrosion protection of mild steel in different environments, Prog. Org. Coat. 76 (2013) 670-676.
DOI: 10.1016/j.porgcoat.2012.12.008
Google Scholar
[9]
S.D. Colin, K.S. Christopher, J.J. Bryony, Evolution of steel surface composition with heating in vacuum and in air, Appl. Surf. Sci. 257 (2011) 10005-10017.
Google Scholar
[10]
A.S. Afolabi, A.S. Abdulkareem, S.D. Mhlanga S.E. Iyuke, Synthesis and purification of bimetallic catalyzed carbon nanotubes in a horizontal CVD reactor, J. Exp. Nanosci. 6 (2011) 248-262.
DOI: 10.1080/17458080.2010.497941
Google Scholar
[11]
W.A. Heer, Nanotubes and the pursuit of applications, Mater. Res. Bull. 29 (2004) 281-285.
Google Scholar
[12]
B. Roman, M. Somenath, Mechanism of carbon nanotube growth by CVD, Chem. Phys. Lett. 424 (2006) 126-132.
Google Scholar
[13]
R.H. Baughman, A.A. Zakhidov, W.A. De heer, Carbon nanotubes - the route towards applications, Sci. 297 (2002) 787-792.
DOI: 10.1126/science.1060928
Google Scholar
[14]
E.T. Thostenson, W. Ren, T.W. Chou, Advances in science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61 (2003) 1899-1912.
DOI: 10.1016/s0266-3538(01)00094-x
Google Scholar
[15]
V. Lordi, N. Yao, Molecular mechanics of binding in carbon-nanotube polymer composite, J. Mater. Res. 15 (2000) 2770-2779.
DOI: 10.1557/jmr.2000.0396
Google Scholar
[16]
H.J.H. Lai, M.C.C. Lin, M.H. Yang, K. Li, Unusual morphologies of nanoparticles obtained by arc-discharge, Mater. Sci. Eng. 16 (2000) 23-26.
Google Scholar
[17]
T. Nozaki, S. Yoshida, T. Karatsu, K. Okazaki, Atmospheric-pressure plasma synthesis of carbon nanotubes, J. Phys. D: Appl. Phys. 44 (2011) 17400-174015.
DOI: 10.1088/0022-3727/44/17/174007
Google Scholar
[18]
K.L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci. 48 (2003) 57-170.
Google Scholar
[19]
C. Luca, S. Manuela. D.G. Silviano, C. Paola, N. Francesca, G. Eric, L. Serge, D.C. Maurizio, The synthesis and characterization of carbon nanotubes grown by chemical vapour deposition using a stainless steel, Carbon 49 (2011) 3307-3315.
DOI: 10.1016/j.carbon.2011.04.014
Google Scholar
[20]
D. Vairavapandian, P. Vichchulada, M.D. Lay, Preparation and modification of carbon nanotubes. Review of advances and applications in catalysis and sensing, Anal. Chim. Acta 626 (2008) 119-129.
DOI: 10.1016/j.aca.2008.07.052
Google Scholar
[21]
N. Zhao, C. He, J. Li, Z. Jiang, Y.Li, Study on purification and tip-opening of CNTs fabricated by CVD, Mater. Res. Bull. 41 (2006) 2204-2209.
DOI: 10.1016/j.materresbull.2006.04.029
Google Scholar
[22]
A.S. Afolabi, A. S. Abdulkareem, S.E. Iyuke, Synthesis of carbon nanotubes and nanoballs by swirled floating catalyst chemical vapour deposition method, J. Exp. Nanosci. 2 (2007) 269-277.
DOI: 10.1080/17458080701745658
Google Scholar
[23]
S.D. Mhlanga, K.C. Mondal, R. Carter, M.J. Witcomb, N.J. Coville, The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts, S. Afr. J. Chem. 62 (2009) 67-76.
Google Scholar
[24]
I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon 43 (2005) 3124-3131.
DOI: 10.1016/j.carbon.2005.06.019
Google Scholar
[25]
S.H. Su, W.T. Chiang, C.C. Lin, M. Yokoyama, Multi-wall carbon nanotubes: purification, morphology and field emission performance, Phys. E: Low-Dimens. Syst. Nanostructures 40 (2008) 2322-2326.
DOI: 10.1016/j.physe.2007.09.087
Google Scholar
[26]
R. Gorochiewicz, The kinetics of low-pressure carburizing of alloy steels, Vac. 86 (2011) 448-451.
Google Scholar
[27]
T. Ebbensen, A. Ajayan, H. Huira, K. Tanigaki, Purification of carbon nanotubes, Nature 367 (1940) 519.
Google Scholar
[28]
E.R. Edwards, E.F. Antunes, E.C. Botleho, M.R. Baldan, E.J. Corat, Evaluation of residual iron in carbon nanotubes purified by acid treatment, Appl. Surf. Sci. 258 (2011) 641-648.
DOI: 10.1016/j.apsusc.2011.07.032
Google Scholar
[29]
A.G. Osorio, I.C.L. Silveira, V.L. Bueno, C.P. Bergmann, H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl. Surf. Sci. 255 (2008) 2485-2489.
DOI: 10.1016/j.apsusc.2008.07.144
Google Scholar
[30]
S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, Purification of carbon nanotubes grown by thermal CVD, Phys. E: Low Dimen. Syst. Nanostructures 37 (2007) 58-61.
DOI: 10.1016/j.physe.2006.07.014
Google Scholar
[31]
M.A.M. Motchelaho, H. Xiong, M. Moyo, L.L. Jewel, N.J. Coville, Effect of acid treatment on the surface of multi-walled carbon nanotubes prepared from Fe-Co supported on CaCO3: Correlation with Fischer-Tropsch catalyst activity, J. Mol. Catal. A: Chem. 335 (2011) 189-198.
DOI: 10.1016/j.molcata.2010.11.033
Google Scholar
[32]
C.J. Woo. H.K. Chong, Formation of austenite from a ferrite-pearlite microstructure during annealing. J. Mater. Sci. 20 (1985) 4392-4398.
DOI: 10.1007/bf00559327
Google Scholar
[33]
S. Abdalla, F. Al-Marzouki, A.A. Al-Ghamdi, and A. Abdel-Daiem, Different technical applications of carbon nanotubes, Nanoscale Research Letters,10(1) (2015) 358.
DOI: 10.1186/s11671-015-1056-3
Google Scholar
[34]
Y. Li, B. Wu, Y. Xiong, Q. Yuan, and H. Cui, Microstructure evolution of 20CrMnTi steel during vacuum carburizing and quenching process, Materials Research Express, 7(1) (2020) 016533.
Google Scholar
[35]
T. Turpin, J. Dulcy, and M. Gantois, Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling, Metallurgical and Materials Transactions A, 47 (4) (2016) 1725-1738, 2016.
DOI: 10.1007/s11661-005-0271-4
Google Scholar
[36]
S. Karabelchtchikova and R. D. Sisson Jr., Carbon diffusion in steels: A numerical simulation of vacuum carburizing," Journal of Phase Equilibria and Diffusion, 37 (6) (2016), 680-689.
Google Scholar