Sandwich Panels and Polymer Blends from Recycled Polyethylene Terephthalate (PET) and other Post-Consumer Plastics

Article Preview

Abstract:

The exponential increase in global plastic wastes dangerously impacts the environment and human health. In this study, Polyethylene Terephthalate (PET), High-density Polyethylene (HDPE), Polypropylene (PP), and Polymethyl methacrylate (PMMA) were recycled into sandwich panels and polymer blends. Recycled PET (rPET) fibers, with 25 and 50 fibers, were used as the middle layer for the sandwich panels. The face layers were made from the recycled HDPE (rHDPE), recycled PP (rPP), and recycled PMMA (rPMMA). The weak interaction between rPET fibers and the face panels resulted in low mechanical performance. The sandwich panel with rPMMA as the face layers and 25 rPET fibers as the core exhibited good overall mechanical performance. The stiffness of sandwich panels was improved. The polymer blends were prepared using rPET at 70 wt% and other plastic wastes at 30 wt%. The addition of a compatibilizer can enhance the mechanical properties of polymer blends. The rPET/ rPP blend and rPET/ rHDPE blend showed slightly higher mechanical performance compared to the rPET/ rPMMA blend. All polymer blends exhibited higher flexural strength, impact strength, and hardness compared to neat rPET.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-108

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Liu, Y. Shi, X. Wu, H. Wang, H. Huang, X. Guo, and S. Gao: Sci. Total Environ. Vol. 768 (2021), p.144969

Google Scholar

[2] Z. Yang, F. Lü, H. Zhang, W. Wang, L. Shao, J. Ye, and P. He: J. Hazard. Mater. Vol. 401 (2021), p.123429

Google Scholar

[3] Industry Agenda, World Econ. Forum 36 (2016)

Google Scholar

[4] Y. Xue, L. Bai, M. Chi, X. Xu, L. Tai, Z. Chen, K. Yu, and Z. Liu: Chem. Eng. J. Vol. 446 (2022) p.137155

Google Scholar

[5] A. I. Almohana, M. Y. Abdulwahid, I. Galobardes, J. Mushtaq, and S. F. Almojil: Environ. Chall. Vol. 9 (2022), p.100626

DOI: 10.1016/j.envc.2022.100626

Google Scholar

[6] F. Zhang, Y. Zhao, D. Wang, M. Yan, J. Zhang, P. Zhang, T. Ding, L. Chen, and C. Chen: J. Clean. Prod. Vol. 282 (2021), p.124523

Google Scholar

[7] S. Browning, B. Beymer-Farris, and J. R. Seay: Curr. Opin. Chem. Eng. Vol. 32 (2021), p.100682

Google Scholar

[8] O. Awogbemi and D. V. V. Kallon: J. Energy Inst. Vol. 106 (2023), p.101154

Google Scholar

[9] A. Soni, P. K. Das, M. Yusuf, S. Ridha, H. Kamyab, S. Chelliapan, I. Kirpichnikova, and Z. H. Mussa: Waste Biomass Valori. Vol. 15 (2024), p.1739

DOI: 10.1007/s12649-023-02103-w

Google Scholar

[10] S. Sharifian and N. Asasian-Kolur: J. Anal. Appl. Pyrolysis Vol. 163 (2022), p.105496

Google Scholar

[11] M. Ferdinánd, R. Várdai, T. Lummerstorfer, C. Pretschuh, M. Gahleitner, G. Faludi, J. Móczó, and B. Pukánszky: Compos. Struct. Vol. 311 (2023), p.116810

DOI: 10.1016/j.compstruct.2023.116810

Google Scholar

[12] Y. Yao, M. Li, M. Lackner, and L. Herfried: Materials Vol. 13 (2020), p.3044

Google Scholar

[13] R. Kassab and P. Sadeghian, Structures Vol. 54 (2023), p.1259

Google Scholar

[14] R.A. Hawileh, H. H. Mhanna, A. Al Rashed, J. A. Abdalla, and M. Z. Naser: Eng. Struct. Vol. 256 (2022), p.114036

Google Scholar

[15] R. Kassab and P. Sadeghian: Structures Vol. 57 (2023), p.105057

Google Scholar

[16] C.-M. Wu and W.-Y. Lai: J. Appl. Polym. Sci. Vol. 133, (2016)

Google Scholar

[17] M. O. H. Cioffi, H. J. C. Voorwald, L. R. O. Hein, and L. Ambrosio: Compos. Part Appl. Sci. Manuf. Vol. 36 (2005), p.615

Google Scholar

[18] M. Akbari, A. Zadhoush, and M. Haghighat: J. Appl. Polym. Sci. Vol. 104 (2007), p.3986

Google Scholar

[19] E.P.A. van Bruggen, R. P. Koster, S. J. Picken, and K. Ragaert: Int. Polym. Process. Vol. 31 (2016), p.179

Google Scholar

[20] Y. Tao and K. Mai: Eur. Polym. J. Vol. 43 (2007), p.3538

Google Scholar

[21] L. M. G. Araujo and A. R. Morales: Polímeros Vol. 28 (2018), p.84

Google Scholar

[22] A. F. Ávila and M. V. Duarte: Polym. Degrad. Stab. Vol. 80 (2003), p.373

Google Scholar

[23] L. Yao and C. Beatty, in: Imaging Image Anal. Appl. Plast., edited by B. Pourdeyhimi Publications/William Andrew Publishing, Norwich, NY (1999), p.89–95.

Google Scholar

[24] N. K. Kalfoglou, D. S. Skafidas, J. K. Kallitsis, J.-C. Lambert, and L. Van der Stappen: Polymer Vol. 36 (1995), p.4453

Google Scholar

[25] B. Yang, Y. Wang, L. He, Y. Xie, W. Wu, X. Chen, R. Zhu, Y. Ke, L. Su, J. Qian, R. Xia, Y. Fang, and T. Jiang: Russ. J. Phys. Chem. A Vol. 96 (2022), p.3186

Google Scholar

[26] L. Techawinyutham, N. Sumrith, R. Srisuk, W. Techawinyutham, S. Siengchin, and S. Mavinkere Rangappa: Polym. Compos. Vol. 42 (2021), p.4643

DOI: 10.1002/pc.26175

Google Scholar

[27] Z. Wang, L. Dadi Bekele, Y. Qiu, Y. Dai, S. Zhu, S. Sarsaiya, and J. Chen: Bioengineered Vol. 10 (2019), p.397

DOI: 10.1080/21655979.2019.1661694

Google Scholar

[28] Y.-F. Shih, V. K. Kotharangannagari, and B.-Y. Su: Fibers Polym. Vol. 22 (2021), p.498

Google Scholar

[29] D. G. Dikobe and A. S. Luyt: Thermochim. Acta Vol. 654 (2017), p.40

Google Scholar

[30] L. Techawinyutham, J. Tengsuthiwat, R. Srisuk, W. Techawinyutham, S. Mavinkere Rangappa, and S. Siengchin: J. Mater. Res. Technol. Vol. 15 (2021), p.2445

DOI: 10.1016/j.jmrt.2021.09.052

Google Scholar

[31] L. Techawinyutham, A. Frick, and S. Siengchin: Adv. Mech. Eng. Vol. 8 (2021), p.1687814016645446

Google Scholar