Effect of Solution Treatment on Mechanical and Corrosion Properties of Ti-6Al-7Nb Alloy in Biomedical Applications

Article Preview

Abstract:

Ti-6Al-7Nb is commonly used as orthopedic implant, especially for total hip arthroplasty application, due to its excellency in biocompatibility and surface feature. This study investigates the effects of varying solution treatment temperatures on the mechanical properties and corrosion resistance of the biomedical Ti-6Al-7Nb alloy fabricated using centrifugal investment casting. Solution treatment was performed at 850°C, 970°C, and 1050°C, and the results were evaluated through tensile tests, hardness measurements, microstructural observations, and potentiodynamic polarization tests. The treatment at 970°C produced the optimal combination of mechanical strength and corrosion resistance, achieving a tensile strength of 690 MPa and the lowest corrosion rate of 0.00826 mmpy. The superior performance at 970°C is attributed to the formation of fine α precipitates in the microstructure. These findings highlight the effectiveness of suitable solution treatment temperature in enhancing Ti-6Al-7Nb’s properties for potential use in biomedical applications.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Imam M.A., F.H. Froes and K.L. Housley: Kirk‐Othmer Encyclopedia of Chemical Technology, 5th edn (Wiley, 2010).

DOI: 10.1002/0471238961

Google Scholar

[2] A.U. Saudi, M. Wibisono, W. Rianti, B. Triwibowo and I.N. Jujur: AIP Conf. Proc., Vol. 2663, 050008 (2022).

DOI: 10.1063/5.0108289

Google Scholar

[3] C. Sutowo, S. Supriadi, A.W. Pramono and B. Suharno: East.-Eur. J. Enterp. Technol., Vol. 1, 30–37 (2020).

DOI: 10.15587/1729-4061.2020.193932

Google Scholar

[4] M.D. Richardson: Microstructural and Mechanical Property Development in Metastable Beta Titanium Alloys (University of Sheffield, 2016) https://etheses.whiterose.ac.uk/12663/ (accessed 15 Jan 2023).

Google Scholar

[5] G. Shun, M. Qingkun, Z. Xinqing, W. Qiuming and X. Huibin: Sci. Rep., Vol. 5 (2015).

DOI: 10.1038/srep14688

Google Scholar

[6] H. Shinzing, Z. Qinyang, W. Cong, L. Cheng and M. Chengliang: J. Alloys Compd., Vol. 876 (2021).

DOI: 10.1016/j.jallcom.2021.160085

Google Scholar

[7] N.A. Al-Mobarak, A.A. Al-Swayih and F.A. Al-Rashoud: Int. J. Electrochem. Sci., Vol. 6, 2031–42 (2011).

DOI: 10.1016/S1452-3981(23)18165-X

Google Scholar

[8] M. Sarraf, E.R. Ghomi, S. Alipour, S. Ramakrishna and N.L. Sukiman: Bio-Des. Manuf., Vol. 5, 371–95 (2022).

DOI: 10.1007/s42242-021-00170-3

Google Scholar

[9] J.D. Cotton, L.P. Clark and H.R. Phelps: JOM, Vol. 58, 13–16 (2006).

DOI: 10.1007/S11837-006-0172-Z

Google Scholar

[10] R. Dąbrowski: Arch. Metall. Mater., Vol. 56, 217–22 (2011).

DOI: 10.2478/v10172-011-0025-9

Google Scholar

[11] D. Damisih, I.N. Jujur, J. Sah and D.H. Prajitno: Widyariset, Vol. 4, 153–62 (2018).

DOI: 10.14203/widyariset.4.2.2018.153-162

Google Scholar

[12] S. Cummings: Microstructure and Mechanical Properties of Titanium Alloys in Biomedical Application (University of Queensland, 2017) https://core.ac.uk/download/pdf/156876734.pdf (accessed 20 Mar 2023).

Google Scholar

[13] G. Lutjering, J.C. Williams and A. Gysler: Microstructure and Mechanical Properties of Titanium Alloys, Vol. 2 (World Scientific, 2000).

DOI: 10.1142/4311

Google Scholar

[14] L. Thair, U.K. Mudali, R. Asokamani and B. Raj: Mater. Corros., Vol. 55, 358–66 (2004).

DOI: 10.1002/MACO.200303724

Google Scholar

[15] S. Tamilselvi, V. Raman and N. Rajendran: Electrochim. Acta, Vol. 52, 839–46 (2006).

DOI: 10.1016/J.ELECTACTA.2006.06.018

Google Scholar

[16] T. Sercombe, N. Jones, R. Day and A. Kop: Rapid Prototyp. J., Vol. 14, 300–4 (2008).

DOI: 10.1108/13552540810907974

Google Scholar

[17] S.A. Ajeel, T.L. Alzubaydi and A.K. Swadi: J. Eng. Technol., Vol. 25, 431–42 (2007) https://www.iasj.net/iasj/article/26050.

Google Scholar

[18] A. Fityan, S. El-Hadad and W. Khalifa: Ceram. Trans., Vol. 261, 169–77 (2018).

DOI: 10.1002/9781119423829.CH14

Google Scholar

[19] G. Lütjering and J.C. Williams: Titanium, 2nd edn (Springer, Berlin, 2007) https://link.springer.com/book/.

DOI: 10.1007/978-3-540-73036-1

Google Scholar

[20] M.S. Kalienko, A.V. Zhelnina, A.V. Volkov and P.E. Panfilov: Russ. Metall. (Metally), Vol. 2022, 1211–7 (2022).

DOI: 10.1134/S003602952210010X

Google Scholar

[21] N. Singh, S. Acharya, K.G. Prashanth, K. Chatterjee and S. Suwas: J. Mater. Res., Vol. 36, 3691–700 (2021).

DOI: 10.1557/S43578-021-00238-X

Google Scholar

[22] M.W. Wu, J.K. Chen, M.K. Tsai, S.H. Wang and P.H. Lai: Mater. Lett., Vol. 286, 129198 (2021).

DOI: 10.1016/J.MATLET.2020.129198

Google Scholar

[23] P. Bocchetta, L.Y. Chen, J.D.C. Tardelli, A.C. Dos Reis and P. Leo: Coatings, Vol. 11, 487 (2021).

DOI: 10.3390/COATINGS11050487

Google Scholar

[24] E. Kobayashi, T.J. Wang, H. Doi, T. Yoneyama and H. Hamanaka: J. Mater. Sci. Mater. Med., Vol. 9, 567–74 (1998).

Google Scholar

[25] M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams and M. Shamanian: Corrosion, Vol. 66, 065004-9 (2010).

DOI: 10.5006/1.3452400

Google Scholar