First-Principles Simulation of Structural and Magnetic Properties of H-Terminated Silicene and Germanene

Article Preview

Abstract:

Density-functional-theory calculations have been performed to investigate the magnetism induced in silicene and germanene by hydrogen terminations. We varied the H-terminated structures from monomers to pentamers. Silicene and germanene exhibit magnetic properties after H termination, as indicated by the appearance of magnetic moments. The greater the magnetic moment, the more H atoms are added in the same direction. Conversely, H atoms added in the opposite direction reduce the magnetic moment. We calculated the adsorption energy for each variation of H-terminated silicene and germanene. The results show that both have negative adsorption energies. H-terminated silicene has a more negative adsorption energy than H-terminated germanene. For example, pentamer silicene has an adsorption energy of -10.37 eV, while pentamer germanene has an adsorption energy of -7.39 eV. This indicates that H is more easily adsorbed on silicene. Thus, H-terminated silicene and germanene are suitable for magnetic material device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Dubunos S. V., Zhang, Y., and Jiang, D., Science 306, 5696 (2004).

Google Scholar

[2] Takeda, K. and Shiraishi, K., Physical Review B 50, 20 (1994).

Google Scholar

[3] Voon L. W., Zhu, J., and Schwingenschlögl, U., Applied Physics Reviews 3, 4 (2016).

Google Scholar

[4] Chowdhury, S. and Jana, D., A theoretical review on electronic, Reports on Progress in Physics 79, 12 (2016).

Google Scholar

[5] Nakano, H., Mitsuoka, T., Harada, M., Horibuchi, K., Nozaki, H., Takahashi, N., ... and Nakamura, H., Angewandte Chemie International Edition, 38 (2006).

DOI: 10.1002/ange.200600321

Google Scholar

[6] Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., ... and Le Lay, G., Physical review letters, 15 (2012).

DOI: 10.1103/physrevlett.108.155501

Google Scholar

[7] Balendhran, S., Walia, S., Nili, H., Sriram, S., and Bhaskaran, M., small, 6 (2015).

Google Scholar

[8] Ali, M., Pi, X., Liu, Y., and Yang, D., AIP Advances, 4 (2017).

Google Scholar

[9] Xie, L., Zhu, Q., Zhang, G., Ye, K., Zou, C., Prezhdo, O. V., ... and Jiang, J., Journal of the American Chemical Society, 9 (2020).

Google Scholar

[10] Neugebauer, J., and Van de Walle, C. G., Applied physics letters, 13 (1996).

Google Scholar

[11] Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S., Physical review letters, 23 (2009).

Google Scholar

[12] Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G., and Rabczuk, T., Physica E: Low-dimensional Systems and Nanostructures, 87 (2017).

DOI: 10.1016/j.physe.2016.10.047

Google Scholar

[13] Ishii, F., and Saito, M., Japanese Journal of Applied Physics, 1 (2015).

Google Scholar

[14] Śpiewak, P., Vanhellemont, J., and Kurzydłowski, K. J., Journal of Applied Physics, 6 (2011).

Google Scholar

[15] Trivedi, S., Srivastava, A., and Kurchania, R., Journal of Computational and Theoretical Nanoscience, 3 (2014).

Google Scholar

[16] Zheng, F. B., and Zhang, C. W., Nanoscale research letters, 7 (2012).

Google Scholar

[17] PHASE0, http://www.ciss.iss.u-tokyo.ac.jp/dl/index.php

Google Scholar

[18] Birch, F., Physical review, 71 (1947).

Google Scholar

[19] Zhuravlev, K. K., Physica B: Condensed Matter, 394 (2007).

Google Scholar

[20] Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R. T., and Ciraci, S., Physical Review B, 80 (2009).

DOI: 10.1103/physrevb.80.155453

Google Scholar

[21] Roome, N. J. and Carey, J. D., ACS applied materials & interfaces, 6 (2014).

Google Scholar

[22] Priska, Z., Hidayati, S., Sholihun, S., Amalia, W., & Nurwantoro, P., Key Engineering Materials, 884 (2021).

DOI: 10.4028/www.scientific.net/kem.884.387

Google Scholar

[23] Osborn, T. H., Farajian, A. A., Pupysheva, O. V., Aga, R. S., and Voon, L. L. Y, Chemical Physics Letters 511, 101-105 (2011).

DOI: 10.1016/j.cplett.2011.06.009

Google Scholar

[24] Kumar, V., Santosh, R., Sinha, A., and Kumar, J., Journal of Molecular Modeling 27, 1-10 (2021).

Google Scholar

[25] Kharadi, M. A., Malik, G. F. A., Khanday, F. A., Shah, K. A., Mittal, S., and Kaushik, B. K., ECS Journal of Solid State Science and Technology 9, 115031 (2020).

DOI: 10.1149/2162-8777/abd09a

Google Scholar

[26] Venkatanarayanan, A., and Spain, E., Comprehensive Materials Processing, 13 (2014).

Google Scholar

[27] Zhao, F., Feng, Y., and Feng, W., InfoMat 4, 12365 (2022).

Google Scholar

[28] Griffiths, D. J., and Schroeter, D., Introduction to Quantum Mechanics, Pearson education, London, 2 (2005).

Google Scholar

[29] Chowdhury, S., Bandyopadhyay, A., Dhar, N., and Jana, D., Physical Sciences Reviews, 2 (2017).

Google Scholar