Effect of Oxygen Partial Pressure in Heat Treatment Atmospheres on Wettability of Titanium Surface

Article Preview

Abstract:

The effects of heat treatment in different ambient pressures or oxygen concentration on the wettability of the titanium (Ti) surface were examined. Polished titanium plates were heat-treated at various temperatures and periods in the pressure-controlled or oxygen concentration-controlled atmospheres. The wettability was evaluated by water contact angle measurement. The X-ray photoelectron spectroscopy was performed on the heat-treated and stored Ti surface to analyze adsorbates and surface products. The heat-treated Ti in the atmospheric air became hydrophilic due to the desorption of hydrocarbons on the surface. Then, the adsorption of hydrocarbons during storage in the atmospheric air returned its wettability to that before heating. On the other hand, the heat-treated Ti in a vacuum (low ambient pressures) or low oxygen concentration became hydrophobic due to an increase in the CH/OH (hydrocarbon/hydroxyl group) ratio on the surface. The wettability of hydrophobized Ti retained its wettability during storage in the atmospheric air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-39

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. E. Bloom and D. L. Luca :Handb. Econ. Popul. Aging, vol. 1, (2016), p.3–56

Google Scholar

[2] M. A. Clynes, N. C. Harvey, E. M. Curtis, N. R. Fuggle, E. M. Dennison, and C. Cooper :Br. Med. Bull., (2020)

Google Scholar

[3] N. H.A. Besisa and T. Yajima : in Titanium-Based Alloys - Characteristics and Applications, (2024)

Google Scholar

[4] S. Rao, Y. Okazaki, T. Tateishi, T. Ushida, and Y. Ito :Mater. Sci. Eng. C, vol. 4, no. 4, (1997), p.311–314

Google Scholar

[5] Y. Okazaki, S. Rao, T. Tateishi, and Y. Ito :Mater. Sci. Eng. A, vol. 243, no. 1–2, (1998), p.250–256

Google Scholar

[6] S.-C. Kim, T. Hanawa, T. Manaka, H. Tsuchiya, and S. Fujimoto :Sci. Technol. Adv. Mater., vol. 23, no. 1, (2022), p.322–331

Google Scholar

[7] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki :Biomaterials, vol. 22, (2001), p.1253–1262

Google Scholar

[8] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, and M. Ogawa :Biomaterials, vol. 17, no. 18, (1996), p.1771–1777

DOI: 10.1016/0142-9612(95)00357-6

Google Scholar

[9] L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq :Dent. Mater., vol. 23, p.844–854

DOI: 10.1016/j.dental.2006.06.025

Google Scholar

[10] H. Kim, F. Miyaji, T. Kokubo, and T. Nakamura :J. Biomed. Mater. Res., vol. 32, (1996), p.409–417

Google Scholar

[11] K. Kuroda and M. Okido :J. Biomater. Nanobiotechnol., vol. 9, no. 1, (2018), p.26–40

Google Scholar

[12] Y. Arima and H. Iwata :Biomaterials, vol. 20, (2007), p.3074–82

Google Scholar

[13] N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth :Biomaterials, vol. 25, no. 14, (2003), p.2721–30

DOI: 10.1016/j.biomaterials.2003.09.069

Google Scholar

[14] D. Kido, K. Komatsu, T. Suzumura, T. Matsuura, J. Cheng, J. Kim, W. Park, and T. Ogawa :Int. J. Mol. Sci., vol. 24, no. 19, (2023), p.14688

Google Scholar

[15] H. Bo, N. A. Patankar, and L. Junghoon :Langmuir, vol. 19, no. 12, (2003), p.4999–5003

Google Scholar

[16] A. P. S. Gaur, S. Satyaprakash, M. Ahmadi, D. Saroj P, G. Maxime J.-F, and R. S. Katiyar :Nano Lett., vol. 14, no. 8, (2014), p.4314–4321

Google Scholar

[17] J.-M. Wuab, S. Hayakawa, K. Tsurua, and A. Osaka :Scr. Mater., vol. 46, no. 1, (2002), p.101–106

Google Scholar

[18] A. Obata, E. Miura-Fujiwara, A. Shimizu, H. Maeda, M. Nakai, Y. Watanabe, M. Niinomi, and T. Kasuga :Adv. Mater. Sci. Eng., (2013), p.1–9

Google Scholar

[19] L. Zhiting, W. Yongjin, K. Andrew, S. Ganesh, Z. Feng, M. Rebecca, I. Patrick, M. Brittni, K. Alyssa, P. S. Sumedh, L. Lei, and L. Haitao :Nat. Mater., vol. 12, no. 10, (2013), p.925–931

Google Scholar

[20] L. Cui, H. Li, C. Gong, J. Huang, and D. Xiong :Ceram. Int., vol. 48, no. 18, (2022), p.26264–26273

Google Scholar

[21] V. K. Manivasagam and K. C. Popat :Bioengineering, vol. 10, no. 1, (2022), p.43

Google Scholar

[22] D. B. Millet, N. M. Donahue, S. N. Pandis, A. Polidori, C. O. Stanier, B. J. Turpin, and A. H. Goldstein :J. Geophys. Res. Atmos., vol. 110, no. D7, (2005)

Google Scholar

[23] E. Mcca and J. P. Wightman :Surf. INTERFACE Anal. Surf. Interface Anal, vol. 26, (1998), p.549–564

Google Scholar

[24] A. M. Chaparro, C. Maffiotte, J. Herrero, and M. T. Gutiérrez :Surf. Interface Anal., vol. 30, no. 1, (2000), p.522–526

DOI: 10.1002/1096-9918(200008)30:1<522::aid-sia746>3.3.co;2-0

Google Scholar

[25] A. Toffoli, L. Parisi, R. Tatti, A. Lorenzi, R. Verucchi, E. Manfredi, S. Lumetti, and G. M. Macaluso :J. Oral Sci., vol. 62, no. 2, (2020), p.217–221

DOI: 10.2334/josnusd.19-0235

Google Scholar

[26] Y. Chen and J. Zhang, :Nanomaterials, vol. 12, no. 5, (2022), p.880.

Google Scholar

[27] Y. Ren, X. Qin, M. Barbeck, Y. Hou, H. Xu, L. Liu, and C. Liu :Materials (Basel)., vol. 14, no. 22, (2021), p.6901

Google Scholar

[28] A. Aladjem :J. Mater. Sci., vol. 8, no. 5, (1973), p.688–704

Google Scholar

[29] M. A. Henderson :Langmuir, vol. 12, (1996), p.5093–5098

Google Scholar

[30] V. J. Inglezakis and A. A. Zorpas :Desalin. Water Treat., vol. 39, no. 1–3, (2012), p.149–157

Google Scholar

[31] M. Egashira, S. Kawasumi, S. Kagawa, and T. Seiyama :Bull. Chem. Soc. Jpn., vol. 51, no. 11, (1978), p.3144–3149

Google Scholar

[32] W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M. Anpo, and T. Ogawa :Biomaterials, vol. 30, no. 29, (2009), p.5352–5363

DOI: 10.1016/j.biomaterials.2009.06.040

Google Scholar

[33] S. Takeda, K. Yamamoto, Y. Hayasaka, and K. Matsumoto :J. Non. Cryst. Solids, vol. 249, no. 1, (1999), p.41–46

Google Scholar

[34] M. Primet, P. Pichat, and M. V. Mathieu :J. Phys. Chem., vol. 75, no. 9, (1971), p.1216–1220

Google Scholar

[35] F. O. Rice :J. Am. Soc., vol. 53, no. 5, (1931), p.1959–(1972)

Google Scholar

[36] M. R.A and J.G. Burr :J. Am. Chem. Soc., vol. 85, no. 4, (1963), p.478–479

Google Scholar