The Suppression of Superconductivity in Heavily Overdoped Regime of Eu1.81Ce0.19CuO4+α-δ by Nonmagnetic Zn Impurities

Article Preview

Abstract:

The suppression of superconductivity (Tc) in electron-doped superconducting materials Eu1.81Ce0.19Cu1-yZnyO4+α-δ (ECCZO) heavily overdoped regimes by nonmagnetic impurity Zn with concentration of y = 0, 0.01, 0.02, and 0.03 has been successfully investigated by using XRD and SQUID measurements. All samples were synthesized using the solid-state reaction method. The crystal structure obtained from XRD measurements has a tetragonal structure, which matches the crystal structure of electron-doped superconductors in general. The addition of Zn impurity shows no change in the crystal structure, but there is a decrease in the α-lattice and an increase in the c-lattice, unit cell volume, and Cu-O bond length. This causes the distance between the charge reservoir and the conduction layer to increase and affects the disappearance of Tc. Magnetic susceptibility measurements using SQUID were carried out under FC (Field Cooling) conditions with temperatures between 2 - 30 K with a field of 5 Oe. The sample with y = 0 has diamagnetic properties with a superconductivity value (Tc) of about 11 K. The addition of Zn impurities succeeded in suppressing superconductivity as indicated by the disappearance of Tc, so that the sample is in the ground state. The Curie constant and the effective magnetic moment decrease with increasing Zn concentration. This is probably due to the decrease in Cu2+ when the non-magnetic Zn2+ atoms were added, therefore the overall value of the µeff decreases when Zn2+ substitutes some Cu2+. This result is different from that described by Abrikosov-Gor’kov theory in the hole-doped high-Tc cuprates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Niedermayer, C. Bernhard, B. Blasius, A. Golnik, A. Moodenbaugh, J.I Budnick, Common phase diagram for antiferromagnetism in La2-xSrxCuO4 and Y1-xCaxBa2Cu3O6 as seen by muon spin rotation, Phys. Rev. Lett 80 (1998) 3843.

DOI: 10.1007/bfb0107499

Google Scholar

[2] J. I Budnick, A. Golnik, C. Niedermayer, E. Recknagel, M. Rossmanith, A. Weidinger, Study of magnetic ordering of the high Tc superconductor GdBa2Cu3O7-y by muon spin rotation, Phys. Lett. A 124 (1987) 103.

DOI: 10.1016/0375-9601(87)90523-8

Google Scholar

[3] Y. Dagan, R. L. Greene, Quantum criticality in the electron doped cuprates, Phys. C Supercond. its Appl 460-462 (2007) 1109–1110.

DOI: 10.1016/j.physc.2007.03.230

Google Scholar

[4] C. Panagopoulos, A. P. Petrovic, A. D. Hillier, J. L. Tallon, C. A. Scott, B. D. Rainford, Exposing the spin-glass ground state of the nonsuperconducting La2-xSrxCu1-yZnyO4 high-Tc oxide, Phys. Rev. B - Condens. Matter Mater. Phys 69 (2004) 1–6.

Google Scholar

[5] T. Adachi, Y. Mori, A. Takasahi, M. Kato, T. Nishizaki, T. Sasaki, N. Kobayashi, Y. Koike, Evolution of the electronic state through the reduction annealing in electron-doped Pr1.3-xLa0.7CexCuO4+δ (x = 0.10) single crystals: Antiferromagnetism, kondo effect, and superconductivity, J. Phys. Soc. Japan 82 (2013) 1–5.

DOI: 10.7566/jpsj.82.063713

Google Scholar

[6] T. Adachi, T. Kawamata, Y. Koike, Novel electronic state and superconductivity in the electron-doped high-Tc T' superconductors, Condens. Matter 2 (2017) 1–16.

DOI: 10.3390/condmat2030023

Google Scholar

[7] Y. Tanabe, T. Adachi, T. Noji, Y. Koike, Superconducting volume fraction in overdoped regime of La2-xSrxCuO4: Implication for phase separation from magnetic-susceptibility measurement, J. Phys. Soc. Japan 74 (2005) 2893.

DOI: 10.1143/jpsj.74.2893

Google Scholar

[8] T. P. Croft, C. Lester, M. S. Senn, A. Bombardi, S. M. Hayden, Charge density waves fluctuations in La2-xSrxCuO4 and their competition with superconductivity, Phys. Rev. B 89 (2014) 224513.

Google Scholar

[9] K. M. Suzuki, T. Adachi, Y. Tanabe, H. Sato, Y. Koike, Risdiana, Y. Ishii, T. Suzuki, I. Watanabe, Distinct Fe-induced magnetic states in the underdoped and overdoped regimes of La2-xSrxCu1-yFeyO4 revealed by muon spin relaxation, Physical Review B 86 (2012) 014522.

DOI: 10.1016/j.phpro.2012.04.090

Google Scholar

[10] Y. Tanabe, T. Adachi, K. Suzuki, T. Kawamata, Risdiana, T. Suzuki, T. Suzuki, I. Watanabe, Y. Koike, Similarity between Ni and Zn impurity effects on the superconductivity and Cu-spin correlation in La2-xSrxCu1-yNiyO4 high-Tc cuprates: A comparison based on the hole trapping by Ni, Physical Review B 83 (2011) 144521.

DOI: 10.1016/j.physb.2008.11.190

Google Scholar

[11] Y. Tanabe, T. Adachi, Risdiana, T. Kawamata, T. Suzuki, I. Watanabe, Y. Koike, Ni-substitution effects on Cu-spin correlation in La2-xSrxCu1-yNiyO4 relating to hole trapping and stripe pinning, Physica B 404 (2009) 717.

DOI: 10.1016/j.physb.2008.11.190

Google Scholar

[12] Risdiana, T. Adachi, N. Oki, S. Yairi, Y. Tanabe, K. Omori, T. Suzuki, I. Watanabe, A. Koda, W. Higemoto, Y. Koike, Cu spin dynamics in the overdoped regime of La2-xSrxCu1-yZnyO4 probed by muon spin relaxation, Physical Review B 77 (2008) 054516.

DOI: 10.1016/j.physc.2007.03.372

Google Scholar

[13] Y. Koike, T. Adachi, N. Oki, Risdiana, M. Yamazaki, T. Kawamata, T. Noji, K. Kudo, N. Kobayashi, I. Watanabe, K. Nagamine, μSR and thermal conductivity studies on inhomogeneity of the impurity- and field-induced magnetism and superconductivity in high-Tc cuprates, Physica C 426-431 (2005) 189.

DOI: 10.1016/j.physc.2005.02.033

Google Scholar

[14] T. Adachi, N. Oki, Risdiana, S. Yairi, Y. Koike, I. Watanabe, μSR study of effects of rare-earth moments on the 1/8 anomaly in the excess-oxygen-doped high-Tc cuprates La2-xAxCuO4+δ (A = Eu, Pr), Physica C 460-462 (2007) 1172-1173.

DOI: 10.1016/j.physc.2007.03.301

Google Scholar

[15] R. V. A. Srivastava and W. Teizer, Analytical density of states in the Abrikosov-Gorkov theory, Solid State Commun., 145 (2008) 512–513.

DOI: 10.1016/j.ssc.2007.11.030

Google Scholar

[16] T. Uzumaki, K. Hashimoto, and N. Kamehara, Raman scattering and X-ray diffraction study in layered cuprates, Phys. C Supercond. its Appl 202 (1992) 175–187.

DOI: 10.1016/0921-4534(92)90310-9

Google Scholar

[17] Y. Maryati, A. I. Hanifah, M. A. B. Subardhi, E. A. Rahayu, Y. R. Tayubi, M. Manawan, T. Saragi, Risdiana, The effect of heating treatment in electron doped superconductor Eu1.85Ce0.15CuO4+α-δ, Journal of Physics: Conf. Ser. 1080 (2018) 012022.

DOI: 10.1088/1742-6596/1080/1/012022

Google Scholar

[18] Risdiana, M. Saputri, M. F. Sobari, A. I. Hanifah, W. A. Somantri, and T. Saragi, Structural and Magnetic Properties of n-Type Superconductor Eu2-xCexCuO4+α-δ, IOP Conf. Ser. Mater Sci Eng. 196 (2017) 012012.

DOI: 10.1088/1757-899x/196/1/012012

Google Scholar

[19] N. P. Armitage, P. Fournier, R. L. Greene, Progress and perspective on electron-doped cuprates, Rev. Mod. Phys 82 (2010) 2421.

DOI: 10.1103/revmodphys.82.2421

Google Scholar

[20] Risdiana, M. Manawan, L. Safriani, T. Saragi, W. A. Somantri, A. Aprilia, N. Syakir, S. Hidayat, A. Bahtiar, Fitrilawati, R. E Siregar, Study of transport and magnetic properties of electron-doped superconducting cuprates Eu1.85Ce0.15Cu1-yZnyO4+α-δ, Phys. C Supercond. Its Appl 557 (2019) 41.

DOI: 10.1016/j.physc.2018.12.007

Google Scholar

[21] M. A. Syakuur, Y. Maryati, T. Saragi, Risdiana, The effect of partial substitution of non-magnetic impurity Zn on the magnetic moments of Eu1.88Ce0.12Cu1-yZnyO4+α-δ, Material Science Forum 1028 (2021) 15-20.

DOI: 10.4028/www.scientific.net/msf.1028.15

Google Scholar

[22] Y. Krockenberger, J. Kurian, A. Winkler, A. Tsukada, M. Naito, and L. Alff, Superconductivity phase diagrams for the electron-doped cuprates R2-xCexCuO4 (R=La, Pr, Nd, Sm, and Eu), Phys. Rev. B - Condens. Matter Mater. Phys 77 (2008) 1–5.

DOI: 10.1103/physrevb.77.060505

Google Scholar

[23] I. Felner, D. Hechel, and U. Yaron, Effect of Zn, Ga and Ni Substitution on The Superconducting Properties of The Electron Doped System Nd-Ce-Cu-O, Physica C 165 (1990) 247–250.

DOI: 10.1016/0921-4534(90)90199-o

Google Scholar

[24] M. A. Ahmed, E. H. El-Khawas, S. T. Bishay, Comparison studies of electrical and magnetic behavior of Li-Cd ferrite, J. Materials Science Letters (2000) 791–794.

Google Scholar

[25] R. Pratama, T. Saragi, T. Maulana, S. Winarsih, Y. Maryati, M. A. Syakuur, U, Widyaiswari, D. P. Sari, M. Manawan, Risdiana, Coatings 12 (2022) 789.

DOI: 10.3390/coatings12060789

Google Scholar

[26] R. Pratama, M. F. Falhan, R. S. Effendi, M. A. Syakuur, U. Widyaiswari, D. P. Sari, T. Saragi, Risdiana. Study of Crystal Structure and Magnetics Properties in the Normal State of Electron-Doped Eu2-xCexCu0.97Zn0.03O4+α-δ in Overdoped Regime. Solid State Phenomena 345 (2023) 85–91.

DOI: 10.4028/p-6r0ymf

Google Scholar

[27] G. Xiao, M. Cieplak, J. Q. Xiao, C. L. Chien, Magnetic pair-breaking effects: Moment formation and critical doping level in superconducting La1.85Sr0.15Cu1-xAxO4 systems (A=Fe, Co, Ni, Zn, Ga, Al), Phys. Rev. B 42 (1990) 8752–8755.

Google Scholar