Vacancy Induced Magnetism in Tetragonal Structure ZrO2 Based on First-Principles Study

Article Preview

Abstract:

Tetragonal zirconia (t-ZrO2) has broad applications for structural ceramics, such as solid oxide fuel cells, electrolysis materials, membranes, and biomedical applications. However, its electronics and magnetics properties are rarely well studied. We carried out spin-polarized calculations to understand the vacancy characteristics in t-ZrO2. We apply neutral single Zr vacancy (VZr) and O vacancy (VO) for supercell calculations up to 108 atoms. The calculated band gap of t-ZrO2 is 3.81 eV, which becomes a narrowing band gap by VZr. We find that both vacancies systems induce outward relaxations of atoms near vacancies, creating lower symmetry from pristine D4h to D2d and C2v for VZr and VO cases, respectively. The calculated magnetic moment VZr is 4 mB due to four electrons of the valence band being occupied in the majority state. Four oxygen electrons of p-orbitals dominate the spin densities near VZr. In contrast, the magnetic moment in the case of VO is 0 µB. Thus, since they have a high magnetic moment in the case of VZr, t-ZrO2 is potentially used as material for diluted magnetic semiconductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

Google Scholar

[2] H. Ohno, J. Appl. Phys. 113, 136509 (2013).

Google Scholar

[3] Y. Ogawa, H. Akinaga, F. Takano, T. Arima, and Y. Tokura, J. Phys. Soc. Jpn. 73, 2389 (2004).

Google Scholar

[4] J. M. D. Coey, Solid State Mater. Sci. 10, 83 (2006).

Google Scholar

[5] K. P. McKenna and D. M. Ramo, Phys. Rev. B 92, 205124 (2015).

Google Scholar

[6] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, Phys. Rev. B 73, 132404 (2006).

Google Scholar

[7] N. H. Hong, N. Poirot, and J. Sakai, Phys. Rev. B 77, 033205 (2008).

Google Scholar

[8] K. Potzger, S. Zhou, J. Grenzer, M. Helm, and J. Fassbender, Appl. Phys. Lett. 92, 182504 (2008).

DOI: 10.1063/1.2938419

Google Scholar

[9] S. M. Evans, N. C. Giles, L. E. Halliburton, and L. A. Kappers, J. Appl. Phys. 103, 043710 (2008).

Google Scholar

[10] Y. Liu, L. Jiang, G. Wang, S. Zuo, W. Wang, and X. Chen, Appl. Phys. Lett. 100, 122401 (2012).

Google Scholar

[11] P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).

Google Scholar

[12] C. Madhu, A. Sundaresan, and C. N. R. Rao, Phys. Rev. B 77, 201306(R) (2008).

Google Scholar

[13] M. Y. H. Widianto, H. P. Kadarisman, A. M. Yatmeidhy, and M. Saito, Japanese Journal of Applied Physics 59, 071001 (2020).

Google Scholar

[14] O. Volnianska and P. Boguslawski, Phys. Rev. B 83, 205205 (2011).

Google Scholar

[15] O. Volnianska and P. Boguslawski, J. Phys.: Condens. Matter 22, 073202 (2010).

Google Scholar

[16] P. Dev and P. Zhang, Phys. Rev. B 81, 085207 (2010).

Google Scholar

[17] F. Máca, J. Kudrnovský, V. Drchal, and G. Bouzerar, Applied Physics Letters 92, 212503 (2008).

DOI: 10.1063/1.2936858

Google Scholar

[18] M. Boujnah, H. Labrim, K. Allam, et al., J. Supercond. Nov. Magn. 26, 2429–2434 (2013).

Google Scholar

[19] T. Archer, C. D. Pemmaraju, and S. Sanvito, J. Magn. Magn. Mater. 316, e188 (2007).

Google Scholar

[20] T. Yamasaki, A. Kuroda, T. Kato, J. Nara, J. Koga, T. Uda, K. Minami, and T. Ohno, Computer Physics Communications 244, 264 (2019).

DOI: 10.1016/j.cpc.2019.04.008

Google Scholar

[21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

Google Scholar

[22] Musyarofah, N. D. Lestari, R. Nurlaila, N. F. Muwwaqor, Triwikantoro, and S. Pratapa, Ceramics International 45, 6639 (2019).

DOI: 10.1016/j.ceramint.2018.12.152

Google Scholar

[23] M. Y. H. Widianto and M. Saito, Japanese Journal of Applied Physics 61, 035503 (2022).

Google Scholar

[24] X. Lu, K. Liang, S. Gu, Y. Zheng, and H. Fang, Journal of Materials Science 32, 6653–6656 (1997).

Google Scholar

[25] H. Kwak and S. Chaudhuri, Surface Science 604, 2116 (2010).

Google Scholar

[26] S. Fabris, A. T. Paxton, and M. W. Finnis, Acta Materialia 50, 5171 (2002).

Google Scholar

[27] Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77, 205411 (2008).

Google Scholar

[28] D. Y. Pratama, B. Hariyanto, S. Y. Purwaningsih, A. M. Hatta, and S. Pratapa, Physica Scripta 99, 085971 (2024).

DOI: 10.1088/1402-4896/ad6246

Google Scholar

[29] C. C.W. K.-Gamage and F. Ramezanipour, J. Phys. Chem. Sol. 171, 111013 (2022).

Google Scholar

[30] K. Kliemt, J.D. Reusch, M. Bolte, and C. Krellner, J. Mag. Mag. Mat. 552, 169199 (2022).

Google Scholar

[31] S. Pattanaik, D. K. Mishra, M. K. Sharma and R. Chatterjee, Inor. Chem. Commun. 118, 1080 (2020).

Google Scholar