Effect of Frequency on Selected Properties of Wc HiPIMS Coatings Deposited Using a Mixture of Ar+Kr as Working Gas

Article Preview

Abstract:

In the article, the authors describe the WC coatings deposited by the High Power Impulse Magnetron Sputtering (HiPIMS) method. Industrial equipment was used to prepare the charges. A mixture of argon and krypton (Ar+Kr) gases was used as the working gas. Three coatings were deposited where the frequency was varied in the range from 1000 Hz to 2500 Hz. The thickness ranged from 2.8 µm to 6.8 µm was achieved. The thickness increased with the frequency of the coating process. The authors further evaluated mechanical properties such as roughness, hardness and Young's modulus and tribological properties such as coefficient of friction and wear. The measured properties were compared with the authors' published results in the articles of renowned scientific journals. The measured results compared with published results in scientific journals showed that the increase in frequency has an effect on the kinetic energy of the incident Ar+Kr ions. This causes a greater amount of dusted WC particles from the target, which results in a greater thickness of the deposited coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-72

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bhushan, B.K. Gupta, Handbook of Tribology: Materials, Coatings, and Surface Treatments, second ed., McGraw-Hill: New York, NY, USA, 1991.

Google Scholar

[2] P. Horňák, D. Kottfer, L. Kaczmarek, K. Kyziol, J. Vavro, M. Klich, J. Trebuna, M. Vrábeľ, M. Franková, Microstructure and mechanical properties of annealed WCC coatings deposited with different gas mixtures in an RFMS process. Ceram. Silikáty 63 (2019) 213–222.

DOI: 10.13168/cs.2019.0013

Google Scholar

[3] S. Baragetti, R. Gerosa, B. Rivolta, G. Silva, F. Tordini, Fatigue behavior of foreign object damaged 7075 heat treated aluminum alloy coated with PVD WC/C, Procedia Engineering 10 (2011) 3375–3380.

DOI: 10.1016/j.proeng.2011.04.556

Google Scholar

[4] L.C. Agudelo-Morimitsu, J. DeLaRoche, A. Ruden, D. Escobar, E. Restrepo-Parra, Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering, Ceram. Int. 40, (2014) 7037–7042.

DOI: 10.1016/j.ceramint.2013.12.033

Google Scholar

[5] L.C. Agudelo-Morimitsu, J. DeLaRoche, D. Escobar, R. Ospina, E. Restrepo-Parra. Substrate heating and post-annealing effect on tungsten/tungsten carbide bilayers grown by non-reactive DC magnetron sputtering, Ceram. Int. 39 (2013) 7355–7365.

DOI: 10.1016/j.ceramint.2013.02.075

Google Scholar

[6] M. Drábik, M. Truchlý, V. Ballo, T. Roch, L. Kvetková, P. Kúš, Influence of substrate material and its plasma pretreatment on adhesion and properties of WC/a-C:H nanocomposite coatings deposited at low temperature, Surf. Coating. Technol. 333 (2018) 138–147.

DOI: 10.1016/j.surfcoat.2017.10.081

Google Scholar

[7] P. Horňák, D. Kottfer, L. Kaczmarek, M. Kianicová, J. Balko, F. Rehák, M. Pekarčíková, P. Čižnár, The effect of pressure, bias voltage and annealing temperature on N2 and N2+SiH4 doped WC/C DC magnetron sputtered layers, Ceram. Silikáty, 62(1) (2018) 97-107.

DOI: 10.13168/cs.2018.0001

Google Scholar

[8] M.D. Abad, M.A Muñoz-Márquez, S. El Mrabet, A. Justo, J.C. Sánchez-López, Tailored synthesis of nanostructured WC/a-C layers by dual magnetron sputtering, Surf. Coating. Technol. 204 (2010) 3490–3500.

DOI: 10.1016/j.surfcoat.2010.04.019

Google Scholar

[9] S. El Mrabet, M.D. Abad, J.C. Sánchez-López, Identification of the wear mechanism on WC/C nanostructured coatings, Surf. Coating. Technol. 206 (2011) 1913–1920.

DOI: 10.1016/j.surfcoat.2011.07.059

Google Scholar

[10] Y. S. Park, Y. Park, H. Jung, T.-H. Jung, D.-G. Lim, W. S. Choi, Tribological properties of a-C:W film deposited by radio frequency magnetron Co-sputtering method, Thin Solid Films, 521 (2012) 107–111.

DOI: 10.1016/j.tsf.2012.02.042

Google Scholar

[11] M. Makowka, W. Pawlak, P. Konarski, B. Wendler, Hydrogen content influence on tribological properties of nc-WC/a-C:H coatings, Diam. Relat. Mater. 67 (2016) 16–25.

DOI: 10.1016/j.diamond.2016.01.007

Google Scholar

[12] H. Zhao, Z. Ni, F. Ye, Effect of carbon content on structure and properties of WCN coatings prepared by RF magnetron sputtering, Surf. Coating. Technol. 287 (2016) 129–137.

DOI: 10.1016/j.surfcoat.2016.01.003

Google Scholar

[13] Y. Li, A. Zhang, G. Li, The influence of micrstructure on mechanical property of polytypic TiC/ WC nanomultilayers, Vacuum 117 (2015) 23-26.

DOI: 10.1016/j.vacuum.2015.03.027

Google Scholar

[14] M. Ferdinandy, F. Lofaj, J. Dusza, D. Kottfer, Preparation of WC coatings by W(CO)6 decomposition using PE CVD method (in Slovak). Chem. Lett. 105 (2011) s. 442–s444.

Google Scholar

[15] M. Trebuňová, D. Kottfer, K. Kyziol, M. Kaňuchová, D. Medved', R. Džunda, M. Kianicová, L. Rusinko, A. Breznická, M. Csatáryová, The WC and CrC Coatings Deposited from Carbonyls Using PE CVD Method—Structure and Properties. Materials, 16 20235044.

DOI: 10.3390/ma16145044

Google Scholar

[16] F. Lofaj, L. Kvetková, P. Hviščová, M. Gregor, M. Ferdinandy, Reactive processes in the high target utilization sputtering (HiTUS) W–C based coatings, J. Eur. Ceram. Soc. 36 (2016) 3029–3040.

DOI: 10.1016/j.jeurceramsoc.2015.12.043

Google Scholar

[17] F. Lofaj, M. Kabátová, M. Klich, D. Vaňa, J. Dobrovodský, The comparison of structure and properties in DC magnetron sputtered and HiPIMS W-C:H coatings with different hydrogen content. Ceram. Int. 45 (2019) 9502–9514.

DOI: 10.1016/j.ceramint.2018.09.219

Google Scholar

[18] F. Lofaj, M. Kabatova, L. Kvetkova, J. Dobrovodsky, V. Girman, Hybrid PVD-PECVD W-C:H coatings prepared by different sputtering techniques: The comparison of deposition processes, composition and properties, Surf. Coating. Technol. 375 (2019) 839–853.

DOI: 10.1016/j.surfcoat.2019.07.078

Google Scholar

[19] VDI 3198, ASTM C1624 – 05 (2010), Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. West Conshohocken, PA, 2010, [Online], Available: http://www.astm.org/Standards/C1624. htm [4 May 2023], 2010.

DOI: 10.1520/c1624

Google Scholar