Use of Integral Characteristics in the Evaluation of Surface Texture of Components after Plasma Nitriding

Article Preview

Abstract:

The paper presents the use of integral methods of surface texture evaluation of structural steel samples used in armaments production for the analysis of the functional behaviour of gear surfaces. The aim of the paper is to evaluate the relationship between the quality of the ground surface and the surface after the plasma nitriding process and the functional properties of the surface using unconventional characteristics. These characteristics include Amplitude Distribution and Material Ratio, Autocorrelation Function (ACF), Frequency Spectrum (FS) and Power Spectral Density (PSD). These characteristics can, for example, reveal small changes in surface texture caused by both the cutting tool and surface treatments, such as diffusion nitriding technology, which show only slight changes in standard parameters. Thus, these characteristics can be used as a suitable diagnostic tool for evaluating changes in the functional properties of surfaces. These changes can usually be characterized by wavelength profile inequalities and statistical and spectral properties. In this paper, the surfaces of C45, 15NiCr13, 18CrNiMo7-6 and 16MnCr5 steels after the finishing operation of grinding and further after plasma nitriding are evaluated. Measurement of the standard parameter, i.e. the arithmetic mean height Ra, of ground and nitrided surfaces resulted in the same or slightly higher values after diffusion technology. Using integral characteristics, changes in surface texture were found to be directly related to the functional behaviour of surfaces in interaction and can predict, for example, noise levels, wear and lubrication properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-39

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.T. Mosisa, H-W. Chen, Y-L. Kuo, J-Y. Guo, S. Mas´ud, W-M. Hsu, Enhancing mechanical properties of surface hardness and abrasion resistance of Fe-Mn-Al alloy by using atmospheric pressure plasma jet nitriding, Surface and Coatings Technology, 484 (2024). ISSN 1879-3347

DOI: 10.1016/j.surfcoat.2024.130817

Google Scholar

[2] Y. Hiraoka, Effect of phase in surface layers on rotating-bending fatigue strength of SCM415 steel after austenitic nitriding, Journal of Materials Research and Technology, 9 (2020) 4894-4903. ISSN 2214-0697

DOI: 10.1016/j.jmrt.2020.03.009

Google Scholar

[3] M. Naeem, S. Awan, M. Shafiq, H.A. Raza, J. Iqbal, J.C. Díaz-Guillén, R.R.M. Sousa, M. Jelani, M. Abrar, Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating, Ceramics International, 48 (2022) 21473-21482. ISSN: 1873-3956

DOI: 10.1016/j.ceramint.2022.04.115

Google Scholar

[4] P. Zhang, Z. Lin, X. Yue, Y. Sun, H. Zhou, J. Zhang, Study on surface integrity and fatigue performance of FeCoCrNiAl0.6 high-entropy alloy based on thermo-mechanical coordinated control, Vacuum, 230 (2024). ISSN 1879-2715

DOI: 10.1016/j.vacuum.2024.113635

Google Scholar

[5] G. Wang, X. Sang, S. Wang, Y. Zhang, G. Xu, M. Zhao, Z. Peng, Surface integrity and corrosion resistance of 18CrNiMo7-6 gear steel subjected to combined carburized treatment and wet shot peening, Surface and Coatings Technology 484 (2024). ISSN 1879-3347

DOI: 10.1016/j.surfcoat.2024.130862

Google Scholar

[6] Z. Afshar, M. Nouri, H. Elmkhah, N. Lin, Y. Yang, The effect of roughness and top layer in solid particle impingement erosion of multilayer nanostructured nitride PVD coatings, Results in Surfaces and Interfaces, 17 (2024). ISSN 2666-8459

DOI: 10.1016/j.rsurfi.2024.100335

Google Scholar

[7] A.F. Rousseau, J.G. Partridge, E.L.H. Mayes, J.T. Toton, M. Kracica, D.G. Mcculloch, E.D. Doyle, Microstructural and tribological characterization of a nitriding/TiAlN PVD coating duplex treatment applied to M2 High Speed Steel tools, Surface and Coatings Technology, 272 (2015) 403-408. ISSN 1879-3347

DOI: 10.1016/j.surfcoat.2015.03.034

Google Scholar

[8] CH. Nguyen, E. Svoboda, J. Sedlacek, J. Sedlak, A. Polzer, P. Sliwkova, Effects of Hybrid Surface Treatment Composed of Plasma Nitriding and CrN Coating on Friction-Wear Properties of Stainless Steel, ECS Transactions, 105 (2021). ISSN 1938-6737

DOI: 10.1149/10501.0309ecst

Google Scholar

[9] S.L. Sankar, G.A. Kumar, P. Kuppusami, Surface modification of EN353 gear material by chromium plating and plasma nitriding to improve surface properties, corrosion and wear resistance, International Journal of Electrochemical Science, 17 (2022). ISSN 1452-3981

DOI: 10.20964/2022.0.48

Google Scholar

[10] D. Bhadraiah, C. Nouveau, B. Veeraswami, K.R.M. Rao, Plasma based nitriding of tool steel for the enhancement of hardness, Materials today: Proceedings, 46 (2021) 940-943. ISSN 2214-7853

DOI: 10.1016/j.matpr.2021.01.185

Google Scholar

[11] P. Widomski, M. Kaszuba, D. Dobras, O. Zindulka, Development of a method of increasing the wear resistance of forging dies in the aspect of tool material, thermo-chemical treatment and PVD coatings applied in a selected hot forging process, Wear, 477 (2021). ISSN 0043-1648

DOI: 10.1016/j.wear.2021.203828

Google Scholar

[12] H. Zhang, J. Yu, Z. Yang, X. Zhang, Y. Dong, J. Jiang, J. Wang, Z. Ren, Surface melt nitriding and strengthening mechanism of plasma torched M50 bearing steel, Journal of Manufacturing Processes, 124 (2024) 1214-1226. ISSN 1526-6125

DOI: 10.1016/j.jmapro.2024.07.012

Google Scholar

[13] G. Chen, Y. Zou, X. Qin, J. Liu, Q. Feng, CH. Ren, Geometrical texture and surface integrity in helical milling and ultrasonic vibration helical milling of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 278 (2020). ISSN 1873-4774

DOI: 10.1016/j.jmatprotec.2019.116494

Google Scholar

[14] J. Holmberg, J. Berglund, A. Wretland, A. Klason, R. Persson, Milling or grinding for manufacturing of an Alloy 718 gas turbine component? – A comparison of surface integrity and productivity, Procedia CIRP, 123 (2024) 7-12. ISSN 2212-8271

DOI: 10.1016/j.procir.2024.05.004

Google Scholar

[15] C. Badini, D. Mazza, T. Bacci, Texture of surface layers obtained by ion nitriding of titanium alloys, Materials Chemistry and Physics, 20 (1988) 559-569. ISSN 1879-3312

DOI: 10.1016/0254-0584(88)90088-0

Google Scholar

[16] L. Cepova, R. Cep, L. Chalko, S. Dvorackova, M. Trochta, M. Rucki, L. Beranek, O. Mizera, V. Chyskala, The Effect of Cutting Tool Geometry on Surface Integrity: A Case Study of CBN Tools and the Inner Surface of Bearing Rings, Applied Sciences, 13 (2023). ISSN 2076-3417

DOI: 10.3390/app13063543

Google Scholar

[17] B. Bumbálek, V. Odvody, B. Ošťádal, Drsnost povrchu. SNTL, Praha, 1989.

Google Scholar

[18] ISO 21920-2:2021 Geometrical product specifications (GPS) – Surface texture: Profile – Part 2: Terms, definitions and surface texture parameters. Brussels: CEN, 92 p.

DOI: 10.3403/30398213u

Google Scholar

[19] ISO 25178-2:2021 Geometrical product specifications (GPS) – Surface texture: Areal – Part 2: Terms, definitions and surface texture parameters. Brussels: CEN, 68 p.

DOI: 10.3403/30397790

Google Scholar

[20] F. Blateyron, The Areal Field Parameters. Chapter 2. In: Leach, R., Characterization of Areal Surface Texture. Springer, Berlin, 2013, pp.15-43. ISBN: 978-3-642-36457-0.

DOI: 10.1007/978-3-642-36458-7_2

Google Scholar

[21] J. Fiala, I. Krous, Povrchy a rozhraní. Česká technika – nakl. ČVUT, Praha, 2009. ISBN: 978-80-01-04248-9.

Google Scholar

[22] R. Dvorakova, E. Svoboda, Applying the Surface Roughness Integral Characteristics to Check the Barrel Bore Surface Condition, Hutnické listy, LXIII (2010) 57 – 62. ISSN 0018-8069.

Google Scholar

[23] P. Podulka, W. Macek, B. Zima, G. Leisuk, R. Branco, G. Królczyk, Roughness evaluation of turned composite surfaces by analysis of the shape of autocorrelation function, Measurement, 222 (2023). ISSN 0263-2241

DOI: 10.1016/j.measurement.2023.113640

Google Scholar

[24] A. Fubel, M. Zech, P. Leiderer, J. Klier, V. Shinkin, Analysis of roughness of Cs surfaces via evaluation of the autocorrelation function, Surface Science, 601 (2007) 1684-1692. ISSN 0039-6028

DOI: 10.1016/j.susc.2007.01.040

Google Scholar

[25] Y. Zhou, X. Pei, Z. Zhang, Y. Wang, Modelling warped rough surface with given height distribution and height difference autocorrelation function, Tribology International, 201 (2025). ISSN 1879-2464

DOI: 10.1016/j.triboint.2024.110205

Google Scholar

[26] J. Chen, J. Tang, W. Shao, X. Li, D. Yang, B. Zhao, H. Dong, A new numerical simulation method of 3D rough surface topography with coupling 3D roughness parameters Sdr, Sdq, Spd, Spc, and characteristic functions, Tribology International, 200 (2024). ISSN 1879-2464

DOI: 10.1016/j.triboint.2024.110117

Google Scholar

[27] U. Aich, S. Banerjee, Characterizing topography of EDM generated surface by time series and autocorrelation function, Tribology International, 111 (2017) 73-90. ISSN 1879-2464

DOI: 10.1016/j.triboint.2017.02.016

Google Scholar