The Effects of MQL Pulse Parameters on Cutting Force, Cutting Temperature and Surface Roughness in Turning Process

Article Preview

Abstract:

This study aims to investigate the effects of Minimum Quantity Lubrication (MQL) independent pulse parameters, which are the intervals between two pulses (1, 2, and 3 seconds) and the duration of the lubricant application (1, 2, and 3 seconds), in the turning of AISI 1040 steel. MQL pulse parameters supplying the best lubrication in terms of cutting force, cutting temperature, and surface roughness were 1 second interval between pulses and 3 seconds duration of lubricant application. These parameters provided 10.7%, 43.6%, and 65.5% improvement in cutting force, cutting temperature and surface roughness values, respectively, compared to dry cutting conditions. When the MQL pulse parameters were compared among themselves, an improvement of 6.7%, 38.3% and 61.7% was achieved in the cutting force, cutting temperature, and surface roughness values, respectively, in the conditions that gave the worst and the best results. According to ANOVA (Analysis of variance) results, the duration of the lubricant application was determined as the most important parameter on the surface roughness and resultant force whereas the interval between two pulses was obtained the most important parameter on the cutting temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Usluer, U. Emiroğlu, Y.F. Yapan, G. Kshitij, N. Khanna, M. Sarıkaya and A. Uysal: Sust. Mater. Technol. 36 (2023) e00618.

DOI: 10.1016/j.susmat.2023.e00618

Google Scholar

[2] N.A. Abukhshim, P.T. Mativenga and M.A. Sheikh: J. Mach. Tools Manuf. 46 (2006) 782-800.

Google Scholar

[3] Z.B. Hou and R. Komanduri: Int. J. Heat Mass Transf. 43 (2000) 1679-1698.

Google Scholar

[4] E. García-Martínez, A. Martínez-Martínez, M.C. Manjabacas-Tendero and V. Miguel-Eguía: Meas. 189 (2022) 110632.

DOI: 10.1016/j.measurement.2021.110632

Google Scholar

[5] Y. Touggui, A. Uysal., U. Emiroglu, S. Belhadi and M. Temmar: Int. J. Adv. Manuf. Technol. 115 (2021) 3983-3997.

DOI: 10.1007/s00170-021-07448-x

Google Scholar

[6] S.H. Ali, Y. Yao, B. Wu, B. Zhao, W. Ding, M. Jamil, A. Khan, A. Baig, Qi L., D. Xu: Chin. J. Aeronaut. (2024) 1-27.

Google Scholar

[7] K. Jagatheesan, K. Babu, D. Madhesh: Mater. Today: Proc. 46 (2021) 4331-4335.

Google Scholar

[8] E. Salur, M. Kuntoğlu, A. Aslan and D.Y. Pimenov: Metals 11(11) (2021) 1674-1690.

Google Scholar

[9] S. Ekinovic, H. Prcanovic, E. Begovic: Procedia Eng. 132 (2015) 608-614.

Google Scholar

[10] V. Baldin, L.R.R. da Silva, R. Davis, M.J. Jackson, F.L. Amorim, C.F. Houck, Á.R. Machado: Lubr. 11 (2023) 175.

Google Scholar

[11] S. Chinchanikar and S.K. Choudhury: Meas. 55 (2014) 536-548.

Google Scholar

[12] S. Tiwari and M. Amarnath: Biomass Conv. Bioref. (2023) 1-21.

Google Scholar

[13] H. Gürbüz, Y.E. Gönülaçar and Ş. Baday: Mach. Sci. Technol. 24(5) (2020) 663-687

Google Scholar

[14] P.A. Jadhav and R. Deivanathan: Mater. Today: Proc. 38 (2021) 2499-2505.

Google Scholar

[15] D.B. Cönger, Y.F. Yapan, U. Emiroğlu, A. Uysal, E. Altan: J. Manuf. Proces. 109 (2024) 524-536.

Google Scholar

[16] L. Yan, K. Luo, T. Jiang, H. Xie, Y. Li, Z. Xiang, F. Jiang: Int. J. Adv. Manuf. Technol. (2024) 1-14

Google Scholar

[17] G. Zhu, S. Yuan, B. Chen: Int. J. Adv. Manuf. Technol. 101 (2019) 565-578.

Google Scholar

[18] M. Rana, T. Singh, A. Saini, J. Singh, V.K. Sharma, M. Singh, R.S. Rooprai: Mater. Today: Proc. 44(2) (2021) 3177-3182.

DOI: 10.1016/j.matpr.2021.02.830

Google Scholar

[19] E. Abd Rahima and H. Dorairaju: Measur. 123 (2018) 213-225.

Google Scholar

[20] S. Roy, R. Kumar, A.K. Sahoo and R.K. Da: Mater. Today: Proc. 18 (2019) 5421-5331.

Google Scholar