Influence of Doped Ions on the Properties of Bioactive Glass Scaffolds

Article Preview

Abstract:

This study investigates the morphological, structural, and bioactive properties of strontium-doped bioactive glass (Sr-BG) and copper-strontium-doped bioactive glass (Cu-Sr-BG) scaffolds to enhance their potential for biomedical applications. Scanning electron microscopy (SEM) revealed that both Sr-BG and Cu-Sr-BG scaffolds feature smooth, highly porous surface morphologies with interconnected pores (120–150 µm) created using a foaming agent. This pore network facilitates cell attachment and proliferation. Fourier transform infrared (FTIR) analysis confirmed the preservation of the silica network, with characteristic Si–O–Si bending and stretching peaks remaining consistent after Cu doping. X-ray diffraction (XRD) analysis demonstrated that both scaffolds retained an amorphous structure, with Cu doping successfully incorporated without disrupting this feature. Both Sr-BG and Cu-Sr-BG scaffolds exhibited excellent bioactivity, forming an apatite layer on their surfaces after immersion in simulated body fluid (SBF), indicating strong potential for bone tissue engineering applications. These findings suggest that Sr-and Cu-doped bioactive glass scaffolds possess promising characteristics for promoting cell attachment and osteoconductivity, positioning them as viable candidates for future biomedical applications in bone regeneration

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-15

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Al-allaq, J.S. Kashan, A review: In vivo studies of bioceramics as bone substitute materials, Nano Select 4(2) (2023) 123-144.

DOI: 10.1002/nano.202200222

Google Scholar

[2] S. Kalsi, J. Singh, S.S. Sehgal, N.K. Sharma, Biomaterials for tissue engineered bone Scaffolds: A review, Materials Today: Proceedings 81 (2023) 888-893.

DOI: 10.1016/j.matpr.2021.04.273

Google Scholar

[3] A. Szwed-Georgiou, P. Płociński, B. Kupikowska-Stobba, M.M. Urbaniak, P. Rusek-Wala, K. Szustakiewicz, P. Piszko, A. Krupa, M. Biernat, M. Gazińska, M. Kasprzak, K. Nawrotek, N.P. Mira, K. Rudnicka, Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems, ACS Biomaterials Science & Engineering 9(9) (2023) 5222-5254.

DOI: 10.1021/acsbiomaterials.3c00609

Google Scholar

[4] H. Budharaju, S. Suresh, M.P. Sekar, B. De Vega, S. Sethuraman, D. Sundaramurthi, D.M. Kalaskar, Ceramic materials for 3D printing of biomimetic bone scaffolds – Current state-of-the-art & future perspectives, Materials & Design 231 (2023) 112064.

DOI: 10.1016/j.matdes.2023.112064

Google Scholar

[5] M.S. Shoushtari, D. Hoey, D.R.A. Biak, N. Abdullah, S. Kamarudin, H.S. Zainuddin, Sol–gel‑templated bioactive glass scaffold: a review, Research on Biomedical Engineering 40(1) (2024) 281-296.

DOI: 10.1007/s42600-024-00342-x

Google Scholar

[6] P. Naruphontjirakul, P. Panpisut, S. Patntirapong, Zinc and strontium-substituted bioactive glass nanoparticle/alginate composites scaffold for bone regeneration, International Journal of Molecular Sciences 24(7) (2023) 6150.

DOI: 10.3390/ijms24076150

Google Scholar

[7] A. Haider, A. Waseem, N. Karpukhina, S. Mohsin, Strontium-and zinc-containing bioactive glass and alginates scaffolds, Bioengineering 7(1) (2020) 10.

DOI: 10.3390/bioengineering7010010

Google Scholar

[8] P. Naruphontjirakul, P. Kanchanadumkerng, P. Ruenraroengsak, Multifunctional Zn and Ag co-doped bioactive glass nanoparticles for bone therapeutic and regeneration, Scientific Reports 13(1) (2023) 6775.

DOI: 10.1038/s41598-023-34042-w

Google Scholar

[9] T.-Y. Yang, G.-I. Chern, W.-H. Wang, C.-J. Shih, Synthesis, Characterization, and Bioactivity of Mesoporous Bioactive Glass Codoped with Zinc and Silver, International Journal of Molecular Sciences 24(18) (2023) 13679.

DOI: 10.3390/ijms241813679

Google Scholar

[10] Z. Azari, F. Kermani, S. Mollazadeh, F. Alipour, A. Sadeghi-Avalshahr, M. Ranjbar-Mohammadi, B.J. Kondori, Z. Mollaei, S.A. Hosseini, S. Nazarnezhad, Fabrication and characterization of cobalt-and copper-doped mesoporous borate bioactive glasses for potential applications in tissue engineering, Ceramics International 49(23) (2023) 38773-38788.

DOI: 10.1016/j.ceramint.2023.09.214

Google Scholar

[11] N. Alasvand, S. Simorgh, M.M. Kebria, A. Bozorgi, S. Moradi, V.H. Sarmadi, K. Ebrahimzadeh, N. Amini, F. Kermani, S. Kargozar, Copper/cobalt doped strontium-bioactive glasses for bone tissue engineering applications, Open Ceramics 14 (2023) 100358.

DOI: 10.1016/j.oceram.2023.100358

Google Scholar

[12] S.R. Gavinho, A.S. Pádua, L.I.V. Holz, I. Sá-Nogueira, J.C. Silva, J.P. Borges, M.A. Valente, M.P.F. Graça, Bioactive glasses containing strontium or magnesium ions to enhance the biological response in bone regeneration, Nanomaterials 13(19) (2023) 2717.

DOI: 10.3390/nano13192717

Google Scholar

[13] K. Deshmukh, T. Kovářík, T. Křenek, D. Docheva, T. Stich, J. Pola, Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review, RSC advances 10(56) (2020) 33782-33835.

DOI: 10.1039/d0ra04287k

Google Scholar

[14] D. Dhinasekaran, A. Kumar, Fabrication of Bioactive Structures from Sol–Gel Derived Bioactive Glass, Bioactive Glasses and Glass‐Ceramics: Fundamentals and Applications (2022) 87-117.

DOI: 10.1002/9781119724193.ch6

Google Scholar

[15] F. Baino, E. Fiume, M. Miola, E. Verné, Bioactive sol‐gel glasses: processing, properties, and applications, International Journal of Applied Ceramic Technology 15(4) (2018) 841-860.

DOI: 10.1111/ijac.12873

Google Scholar

[16] F. Baino, S. Fiorilli, C. Vitale-Brovarone, Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances, Acta biomaterialia 42 (2016) 18-32.

DOI: 10.1016/j.actbio.2016.06.033

Google Scholar

[17] C. Wang, J. Wang, Q. Li, S. Xu, J. Yang, A review on recent development of foam Ceramics prepared by particle-stabilized foaming technique, Advances in Colloid and Interface Science (2024) 103198.

DOI: 10.1016/j.cis.2024.103198

Google Scholar

[18] J.R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta biomaterialia 23 (2015) S53-S82.

DOI: 10.1016/j.actbio.2015.07.019

Google Scholar

[19] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of 'sol–gel' chemistry as a technique for materials synthesis, Materials Horizons 3(2) (2016) 91-112.

DOI: 10.1039/c5mh00260e

Google Scholar

[20] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27(15) (2006) 2907-15.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[21] C. Gögele, S. Wiltzsch, A. Lenhart, A. Civilleri, T.M. Weiger, K. Schäfer-Eckart, B. Minnich, L. Forchheimer, M. Hornfeck, G. Schulze-Tanzil, Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering, Materials Science and Engineering: C 130 (2021) 112421.

DOI: 10.1016/j.msec.2021.112421

Google Scholar

[22] C.H. Kong, C. Steffi, Z. Shi, W. Wang, Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 106(8) (2018) 2878-2887.

DOI: 10.1002/jbm.b.34143

Google Scholar